Transfer Learning for Text Categorization

Chuong B. Do and Andrew Y. Ng
Presenter: Lei Tang

Department of Computer Science & Engineering
Arizona State University

6th October 2006
Transfer Learning

- also Meta Learning, Multi-task Learning, Structural Learning
- For linear classifiers, past work (naive Bayes, TFIDF) focus on learning the weight (actually try to identify better functions mapping from statistics to weight)
- This work focus on learning the MAPPING FUNCTION from related classification problems
Linear Classifier:

- Linear Classifier: \(f_k(x) = \sum \theta_{ki} x_i \), and

\[
y = \arg \max_k f_k(x)
\]

where \(x_i \) is usually a frequency corresponding to term \(i \).

- Naïve Bayes:

\[
f_{k}^{NB}(x) = \log \hat{p}(y = k) + \sum_{i=1}^{n} x_i \log \hat{p}(w_i | y = k)
\]

- Rocchio Algorithm

\[
f_{k}^{Rocchio} = \sum_{i=1}^{n} (\bar{x}_i | y = k \cdot \log \text{idf})(x_i \cdot \log \text{idf})
\]
Mapping Function(1)

- Linear Classifier: \(f_k(x) = \sum \theta_{ki} x_i \), and where \(x_i \) is usually a frequency corresponding to term \(i \). We can rewrite \(f_k(x) = \sum \theta_{ki} x_i \) as

\[
f_k(x) = \sum g(u_{ki}) x_i
\]

where \(u_{ki} \) is a vector of some statistics computed from the training set. (Similar to the concept of sufficient statistics)

\[
\begin{bmatrix}
 u_{ki1} \\
 u_{ki2} \\
 u_{ki3} \\
 u_{ki4} \\
 u_{ki5}
\end{bmatrix}
= \begin{bmatrix}
 \#w_i \text{ appear in documents of class } k \\
 \#\text{documents of class } k \text{ containing } w_i \\
 \#\text{total words in documents of class } k \\
 \#\text{documents of class } k \\
 \#\text{total documents}
\end{bmatrix}
\]
Mapping Function (2)

\[f_k^{NB}(x) = \log \hat{p}(y = k) + \sum_{i=1}^{n} x_i \log \hat{p}(w_i | y = k) \]

\[u_{ki} = \begin{bmatrix} u_{ki1} \\ u_{ki2} \\ u_{ki3} \\ u_{ki4} \\ u_{ki5} \end{bmatrix} = \begin{bmatrix} \#w_i \text{ appear in documents of class } k \\ \#\text{documents of class } k \text{ containing } w_i \\ \#\text{total words in documents of class } k \\ \#\text{documents of class } k \\ \#\text{total documents} \end{bmatrix} \]

\[g_{NB}(u_{ki}) = \log \frac{u_{ki1} + \varepsilon}{u_{ki3} + n\varepsilon} \]

Similarly, TFIDF can also be written as linear combination of \(g(u_{ki}) \cdot x_i \)
Reformulation of logistic regression

- Why not learn the mapping function \(g \) automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

\[g(u_{ki}) = \beta^T u_{ki} \]

- Reformulate the logistic regression:

\[
p(y = k | x; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}
\]

\[
p(y = k | x; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}
\]

To maximize the log likelihood

\[
\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \beta) - C \| \beta \|^2
\]
Reformulation of logistic regression

- Why not learn the mapping function g automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

$$g(u_{ki}) = \beta^T u_{ki}$$

Reformulate the logistic regression:

$$p(y = k | x; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}$$

$$p(y = k | x; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}$$

To maximize the log likelihood

$$\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \beta) - C\|\beta\|^2$$
Reformulation of logistic regression

Why not learn the mapping function g automatically?
The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

$$g(u_{ki}) = \beta^T u_{ki}$$

Reformulate the logistic regression:

$$p(y = k|x; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki}x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i}x_i)}$$

$$p(y = k|x; \beta) = \frac{\exp(\sum_i \beta^T u_{ki}x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i}x_i)}$$

To maximize the log likelihood

$$\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \beta) - C\|\beta\|^2$$
Reformulation of logistic regression

- Why not learn the mapping function g automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

$$g(u_{ki}) = \beta^T u_{ki}$$

Reformulate the logistic regression:

$$p(y = k|\mathbf{x} ; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}$$

$$p(y = k|\mathbf{x} ; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}$$

To maximize the log likelihood

$$\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(j)}|x^{(j)} ; \beta) - C\|\beta\|^2$$
Reformulation of logistic regression

- Why not learn the mapping function g automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

$$g(u_{ki}) = \beta^T u_{ki}$$

- Reformulate the logistic regression:

$$p(y = k|x; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_k \exp(\sum_i \theta_{ki} x_i)}$$

$$p(y = k|x; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_k \exp(\sum_i \beta^T u_{ki} x_i)}$$

To maximize the log likelihood

$$\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(j)}|x^{(j)}; \beta) - C\|\beta\|^2$$
Nonlinear case

\[\beta^* = \sum_{j=1}^{m} \sum_k \alpha^*_{jk} \sum_i u^{(j)}_{ki} x_i^{(j)} \]

User kernel trick, we can extend the mapping function \(g \) to nonlinear cases (Details skipped here)
How to evaluate?
- Typical cross validation
- dmoz with 16 top-level categories: Test on one category based on built 450 classification problems from the other 15 categories
- Four corpora: learned from one corpora and test on the other three corpora

Results:
Better than NBC, logistic regression, 1-vs-all SVM, MC-SVM
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?

 God says: regularization is always helpful! ??

3. Why use logistic regression formulation?

 Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!

 A new machine learning problem?
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?

 God says: regularization is always helpful! ??

3. Why use logistic regression formulation?
 Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!
 A new machine learning problem?
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?

God says: regularization is always helpful! ??

3. Why use logistic regression formulation?

Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!

A new machine learning problem?
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?

 God says: regularization is always helpful! ??

3. Why use logistic regression formulation?

 Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!

 A new machine learning problem?