Large Scale Community Detection for Social Computing
with Implementations in Hadoop

Lei Tang
Yahoo! Labs

February 23, 2011
SDForum Software Architecture and Platform
Outline

- Introduction to Social Media and Social Computing
- Principles of Community Detection
- Large-Scale Community Detection in Hadoop
- Applications of Community Detection for Social Computing
PARTICIPATING WEB AND SOCIAL MEDIA
Traditional Media

Broadcast Media: One-to-Many

Communication Media: One-to-One
Social Media: Many-to-Many

- Social Networking
- Blogs
- Wiki Forum
- Content Sharing
- Social Media
- delicious
- blogcatalog
- facebook
- LinkedIn
- LiVEJOURNAL
- flickr
- Digg
- YouTube
- Blogger
- Twitter
- Epinions.com
- Wikipedia
Characteristics of Social Media

- Everyone can be a media outlet
- Disappearing of communications barrier
 - Rich User Interaction
 - User-Generated Contents
 - User Enriched Contents
 - User developed widgets
 - Collaborative environment
 - Collective Wisdom
 - Long Tail

Broadcast Media: Filter, then Publish

Social Media: Publish, then Filter
Top 20 Most Visited Websites

- Internet traffic report by Alexa on August 3, 2010

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Rank</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>google.com</td>
<td>11</td>
<td>blogger.com</td>
</tr>
<tr>
<td>2</td>
<td>facebook.com</td>
<td>12</td>
<td>msn.com</td>
</tr>
<tr>
<td>3</td>
<td>yahoo.com</td>
<td>13</td>
<td>myspace.com</td>
</tr>
<tr>
<td>4</td>
<td>youtube.com</td>
<td>14</td>
<td>go.com</td>
</tr>
<tr>
<td>5</td>
<td>amazon.com</td>
<td>15</td>
<td>bing.com</td>
</tr>
<tr>
<td>6</td>
<td>wikipedia.org</td>
<td>16</td>
<td>aol.com</td>
</tr>
<tr>
<td>7</td>
<td>craigslist.org</td>
<td>17</td>
<td>linkedin.com</td>
</tr>
<tr>
<td>8</td>
<td>twitter.com</td>
<td>18</td>
<td>cnn.com</td>
</tr>
<tr>
<td>9</td>
<td>ebay.com</td>
<td>19</td>
<td>espn.go.com</td>
</tr>
<tr>
<td>10</td>
<td>live.com</td>
<td>20</td>
<td>wordpress.com</td>
</tr>
</tbody>
</table>
Social Media’s Important Role

"social networks will complement, and may replace, some government functions,"

Presidential Election, 2008

Egypt Protest, 2011
SOCIAL NETWORKS AND DATA MINING
Social Networks

- A social structure made of nodes (individuals or organizations) that are related to each other by various interdependencies like friendship, kinship, etc.
- Graphical representation
 - Nodes = members
 - Edges = relationships
- Various realizations
 - Social bookmarking (Del.icio.us)
 - Friendship networks (facebook, myspace)
 - Blogosphere
 - Media Sharing (Flickr, Youtube)
 - Folksonomies
Social networks can also be represented in matrix form.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Social Computing and Data Mining

- **Social computing** is concerned with the study of social behavior and social context based on computational systems.

- **Data Mining Related Tasks**
 - Centrality Analysis
 - Community Detection
 - Classification
 - Link Prediction
 - Viral Marketing
 - Network Modeling
Centrality Analysis/Influence Study

- Identify the most important actors in a social network
- Given: a social network
- Output: a list of top-ranking nodes

Top 5 important nodes:
6, 1, 8, 5, 10

(Nodes resized by Importance)
Community Detection

- A community is a set of nodes between which the interactions are (relatively) frequent
 a.k.a. group, subgroup, module, cluster

- Community detection
 a.k.a. grouping, clustering, finding cohesive subgroups
 - Given: a social network
 - Output: community membership of (some) actors

- Applications
 - Understanding the interactions between people
 - Visualizing and navigating huge networks
 - Forming the basis for other tasks such as data mining
Visualization after Grouping

4 Groups:

\{1,2,3,5\}
\{4,8,10,12\}
\{6,7,11\}
\{9,13\}

(Nodes colored by Community Membership)
Classification

- User Preference or Behavior can be represented as class labels
 - Whether or not clicking on an ad
 - Whether or not interested in certain topics
 - Subscribed to certain political views
 - Like/Dislike a product

- Given
 - A social network
 - Labels of some actors in the network

- Output
 - Labels of remaining actors in the network
Visualization after Prediction

Predictions
6: Non-Smoking
7: Non-Smoking
8: Smoking
9: Non-Smoking
10: Smoking

Legend:
- Blue: Smoking
- Green: Non-Smoking
- Black: Unknown
Link Prediction

- Given a social network, predict which nodes are likely to get connected
- Output a list of (ranked) pairs of nodes
- Example: Friend recommendation in Facebook

```
(2, 3)
(4, 12)
(5, 7)
(7, 13)
```
Viral Marketing/Outbreak Detection

- Users have different social capital (or network values) within a social network, hence, how can one make best use of this information?
- **Viral Marketing**: find out a set of users to provide coupons and promotions to influence other people in the network so my benefit is maximized
- **Outbreak Detection**: monitor a set of nodes that can help detect outbreaks or interrupt the infection spreading (e.g., H1N1 flu)
- **Goal**: given a limited budget, how to maximize the overall benefit?
An Example of Viral Marketing

- Find the coverage of the whole network of nodes with the minimum number of nodes
- How to realize it – an example
 - Basic Greedy Selection: Select the node that maximizes the utility, remove the node and then repeat
 - Select Node 1
 - Select Node 8
 - Select Node 7

Node 7 is not a node with high centrality!
Network Modeling

- Large Networks demonstrate statistical patterns:
 - Small-world effect (e.g., 6 degrees of separation)
 - Power-law distribution (a.k.a. scale-free distribution)
 - Community structure (high clustering coefficient)

- Model the network dynamics
 - Find a mechanism such that the statistical patterns observed in large-scale networks can be reproduced.
 - Examples: random graph, preferential attachment process

- Used for simulation to understand network properties
 - Thomas Shelling’s famous simulation: What could cause the segregation of white and black people
 - Network robustness under attack
Comparing Network Models

Observations over various real-word large-scale networks

Outcome of a network model

(Figures borrowed from “Emergence of Scaling in Random Networks”)
Social Computing Applications

- Advertizing via Social Networking
- Behavior Modeling and Prediction
- Epidemic Study
- Collaborative Filtering
- Crowd Mood Reader
- Cultural Trend Monitoring
- Visualization
- Health 2.0
PRINCIPLES OF COMMUNITY DETECTION
Communities

- **Community**: “subsets of actors among whom there are relatively strong, direct, intense, frequent or positive ties.”
 -- Wasserman and Faust, *Social Network Analysis, Methods and Applications*

- Community is a set of actors interacting with each other *frequently*
 - e.g. people attending this conference

- A set of people without interaction is NOT a community
 - e.g. people waiting for a bus at station but don’t talk to each other

- People form communities in Social Media
Example of Communities

Communities from Facebook

Name: Social Computing
Type: Organizations
Members: 14 members

Name: Social Computing
Type: Internet & Technology
Members: 12 members

Name: Social Computing Magazine
Type: Internet & Technology
Members: 34 members

Name: Trustworthy Social Computing
Type: Internet & Technology
Members: 28 members

Name: Social Computing for Business
Type: Internet & Technology
Members: 421 members

Name: UCLA Social Sciences Computing
Type: Internet & Technology
Members: 22 members

Name: Social Media and Computing
Type: Organizations
Members: 6 members

Communities from Flickr

!* Urban LIFE in Metropolis ****
4,286 members | 31 discussions | 89,045 items | Created 45 months ago | Join?
UrbanLIFE: People, Parties, Dance, Music, Life, Love, Culture, Food and Everything what we could imagine by hearing that word URBANLIFE! Have some FUN! Please add... (more)

* Islam Is The Way Of Life (Muslim World)
619 members | 13 discussions | 2,685 items | Created 23 months ago | Join?
The word islam is derived from the Arabic verb aslama, which means to accept, surrender or submit. Thus, Islam means submission to and acceptance of God, and believers must... (more)

* THE CELEBRATION OF ~LIFE~ (Post1=Award1) [only living things]
4,871 members | 22 discussions | 40,519 items | Created 21 months ago | Join?
WELCOME to THE CELEBRATION OF ~LIFE~ (Post1=Award1) PLEASE INVITE & COMMENT USING only THE CODES FOUND BELOW! ★ ★ This group is for sharing BEAUTIFUL, TOP QUALITY images... (more)

"Enjoy Life!"
2,027 members | 10 discussions | 39,916 items | Created 23 months ago | Join?
There are lovely moments and adorable scenes in our lives. Some are in front of you, and some are just waiting to be discovered. A gaze from someone we love, might touch the... (more)

Baby's life
2,047 members | 185 discussions | 30,302 items | Created 32 months ago | Join?
This group is designed to highlight milestones and important events in your baby's life (ie 1st time smiling/crawling/sitting in a high chair/reading/playing etc). It can also be... (more)

Pond Life
903 members | 20 discussions | 8,877 items | Created 32 months ago | Join?
Pic of the week: chosen from the pool by the group admins. Nuphar by guus timpers Pond Life is a group for all aquatic flora and fauna. Koi ponds, wildlife ponds, garden ponds,... (more)

Second Life
10,288 members | 773 discussions | 257,870 items | Created 61 months ago | Join?
Welcome to the Second Life pool, the biggest group on Flickr for residents/players of Second Life, the...
Why Communities in Social Media?

- Human beings are social
- Part of Interactions in social media is a glimpse of the physical world
- People are connected to friends, relatives, and colleagues in the real world as well as online
- Easy-to-use social media allows people to extend their social life in unprecedented ways
 - Difficult to meet friends in the physical world, but much easier to find friends online with similar interests
Community Detection

- **Community Detection**: “formalize the strong social groups based on the social network properties”

- Some social media sites allow people to join **explicit** groups, is it necessary to extract groups based on network topology?
 - Not all sites provide community platform
 - Not all people join groups

- Network interaction provides rich information about the relationship between users
 - Groups are *implicitly* formed
 - Can complement other kinds of information
 - Help network visualization and navigation
 - Provide basic information for other tasks
Subjectivity of Community Definition

A densely-knit community

Each component is a community

Definition of a community can be subjective.
Taxonomy of Community Criteria

- Criteria vary depending on the tasks
- Roughly, community detection methods can be divided into 4 categories (not exclusive):
 - **Node-Centric Community**
 - Each node in a group satisfies certain properties
 - **Group-Centric Community**
 - Consider the connections within a group as a whole. The group has to satisfy certain properties without zooming into node-level
 - **Network-Centric Community**
 - Partition the whole network into several disjoint sets
 - **Hierarchy-Centric Community**
 - Construct a hierarchical structure of communities
Node-Centric Community Detection
Node-Centric Community Detection

- Nodes satisfy different properties
 - Complete Mutuality
 - cliques
 - Reachability of members
 - k-clique, k-clan, k-club
 - Nodal degrees
 - k-plex, k-core
 - Relative frequency of Within-Outside Ties
 - LS sets, Lambda sets
- Commonly used in traditional social network analysis
- Here, we discuss some representative ones
Complete Mutuality: Clique

- A maximal complete subgraph of three or more nodes all of which are adjacent to each other.
- NP-hard to find the maximal clique.
- Recursive pruning: To find a clique of size k, remove those nodes with less than $k-1$ degrees.
- Very strict definition, unstable.
- Normally use cliques as a core or seed to explore larger communities.
Geodesic

- Reachability is calibrated by the Geodesic distance

- Geodesic: a shortest path between two nodes (12 and 6)
 - Two paths: 12-4-1-2-5-6, 12-10-6
 - 12-10-6 is a geodesic

- Geodesic distance: #hops in geodesic between two nodes
 - e.g., \(d(12, 6) = 2 \), \(d(3, 11) = 5 \)

- Diameter: the maximal geodesic distance for any 2 nodes in a network
 - #hops of the longest shortest path

Diameter = 5
Reachability: k-clique, k-club

- Any node in a group should be reachable in k hops

- **k-clique**: a maximal subgraph in which the largest geodesic distance between any nodes <= k

- A k-clique can have diameter larger than k within the subgraph
 - e.g., 2-clique \{12, 4, 10, 1, 6\}
 - Within the subgraph \(d(1, 6) = 3\)

- **k-club**: a substructure of diameter <= k
 - e.g., \{1,2,5,6,8,9\}, \{12, 4, 10, 1\} are 2-clubs
Nodal Degrees: k-plex, k-core

- Each node should have a certain number of connections to nodes within the group
 - **k-core**: a substructure that each node connects to at least k members within the group
 - **k-plex**: for a group with \(n_s \) nodes, each node should be adjacent no fewer than \(n_s - k \) in the group

- The definitions are complementary
 - A k-core is a \((n_s - k)\)-plex

- Networks in social media tend to follow a power law distribution, are k-plex and k-core suitable for large-scale network analysis?
Within-Outside Ties: LS sets

- **LS sets**: Any of its proper subsets has more ties to other nodes in the group than outside the group.

- Too strict, not reasonable for network analysis.

- A relaxed definition is **Lambda sets**
 - Require the computation of edge-connectivity between any pair of nodes via minimum-cut, maximum-flow algorithm.
Recap of Node-Centric Communities

- Each node has to satisfy certain properties
 - Complete mutuality
 - Reachability
 - Nodal degrees
 - Within-Outside Ties

- Limitations:
 - Too strict, but can be used as the core of a community
 - Not scalable, commonly used in network analysis with small-size network
 - Sometimes not consistent with property of large-scale networks
 - e.g., nodal degrees for scale-free networks
Group-Centric Community Detection

Community Detection

- Node-Centric
- Group-Centric
- Network-Centric
- Hierarchy-Centric
Group-Centric Community Detection

- Consider the connections within a group as whole,
- OK for some nodes to have low connectivity
- A subgraph with V_s nodes and E_s edges is a γ-dense quasi-clique if
 \[
 \frac{E_s}{V_s(V_s - 1)/2} \geq \gamma
 \]
- Recursive pruning:
 - Sample a subgraph, find a maximal γ-dense quasi-clique (the resultant size = k)
 - Remove the nodes that
 - whose degree < k γ
 - all their neighbors with degree < k γ
Network-Centric Community Detection

- To form a group, we need to consider the connections of the nodes globally.

- Goal: partition the network into disjoint sets
 - Groups based on Node Similarity
 - Groups based on Latent Space Model
 - Groups based on Block Model Approximation
 - Groups based on Cut Minimization
 - Groups based on Modularity Maximization
Node Similarity

- Node similarity is defined by how similar their interaction patterns are.
- Two nodes are **structurally equivalent** if they connect to the same set of actors.
 - e.g., nodes 8 and 9 are structurally equivalent.
- Groups are defined over equivalent nodes.
 - Too strict
 - Rarely occur in a large-scale
 - Relaxed equivalence class is difficult to compute
- In practice, use **vector similarity**
 - e.g., cosine similarity, Jaccard similarity
Vector Similarity

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>structurally equivalent</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Cosine Similarity:

\[
similarity = \cos(\theta) = \frac{A \cdot B}{\|A\|\|B\|}.
\]

\[
sim(5, 8) = \frac{1}{\sqrt{2} \times \sqrt{3}} = \frac{1}{\sqrt{6}}
\]

Jaccard Similarity:

\[
J(A, B) = \frac{|A \cap B|}{|A \cup B|}.
\]

\[
J(5, 8) = \frac{|\{6\}|}{|\{1, 2, 6, 13\}|} = 1 / 4
\]
Clustering based on Node Similarity

- For practical use with huge networks:
 - Consider the connections as features
 - Use Cosine or Jaccard similarity to compute vertex similarity
 - Apply classical k-means clustering Algorithm

- **K-means Clustering Algorithm**
 - Each cluster is associated with a centroid (center point)
 - Each node is assigned to the cluster with the closest centroid

Algorithm 1 Basic K-means Algorithm.

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
Illustration of k-means clustering
Shingling

- Pair-wise computation of similarity can be time consuming with millions of nodes
- **Shingling** can be exploited
 - Mapping each vector into multiple shingles so the Jaccard similarity between two vectors can be computed by comparing the shingles
 - Implemented using a quick hash function
 - Similar vectors share more shingles after transformation
- Nodes of the same shingle can be considered belonging to one community
- In reality, we can apply 2-level shingling
Fast Two-Level Shingling

Nodes
1 2 3 4 5 6

Shingles
1, 2, 3, 4
2, 3, 4, 5, 6

Meta-Shingles

1st level shingling
2nd level shingling
Groups on Latent-Space Models

- **Latent-space models**: Transform the nodes in a network into a lower-dimensional space such that the distance or similarity between nodes are kept in the Euclidean space.

- **Multidimensional Scaling (MDS)**
 - Given a network, construct a proximity matrix to denote the distance between nodes (e.g. geodesic distance).
 - Let D denotes the *square distance* between nodes.
 - $S \in \mathbb{R}^{n \times k}$ denotes the coordinates in the lower-dimensional space.
 - Objective: minimize the difference $\min \| \Delta(D) - SS^T \|_F$
 - Let $\Lambda = \text{diag}(\lambda_1, \cdots, \lambda_k)$ (the top-k eigenvalues of Δ), V the top-k eigenvectors.
 - Solution:

$$S = V \Lambda^{1/2}$$

- Apply k-means to S to obtain clusters.
MDS-example

Geodesic Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

1, 2, 3, 4, 10, 12

5, 6, 7, 8, 9, 11, 13

k-means

MDS

S

-1.22 -0.12
-0.88 -0.39
-2.12 -0.29
-1.01 1.07
-0.09 -0.77
-0.09 -0.77
-0.30 1.18
2.85 0.00
-0.47 2.13
-0.29 -1.81
Block-Model Approximation

Objective: Minimize the difference between an interaction matrix and a block structure

\[
\min_{S, \Sigma} \| A - S \Sigma S^T \|_F \\
\text{s.t.} \quad S \in \{0, 1\}^{n \times k}, \Sigma \in \mathbb{R}^{k \times k} \text{ is diagonal}
\]

Challenge: \(S \) is discrete, difficult to solve

Relaxation: Allow \(S \) to be continuous satisfying \(S^T S = I_k \)

Solution: the top eigenvectors of \(A \)

Post-Processing: Apply k-means to \(S \) to find the partition

\(S \) is a community indicator matrix
Cut-Minimization

- Between-group interactions should be infrequent
- **Cut**: number of edges between two sets of nodes
- **Objective**: minimize the cut
 \[
 \text{cut}(C_1, C_2, \ldots, C_k) = \sum_{i=1}^{k} \text{cut}(C_i, \overline{C_i})
 \]
 - Limitations: often find communities of only one node
 - Need to consider the group size
- Two commonly-used variants:
 \[
 \text{Ratio-cut}(C_1, C_2, \ldots, C_k) = \sum_{i=1}^{k} \frac{\text{cut}(C_i, \overline{C_i})}{|V_i|}
 \]
 \[
 \text{Normalized-cut}(C_1, C_2, \ldots, C_k) = \sum_{i=1}^{k} \frac{\text{cut}(C_i, \overline{C_i})}{\text{vol}(V_i)}
 \]
Graph Laplacian

- Can be relaxed into the following min-trace problem

\[
\min_{S \in \mathbb{R}^{n \times k}} \text{Tr}(S^T L S) \quad \text{s.t.} \quad S^T S = I
\]

- \(L \) is the (normalized) Graph Laplacian

\[
L = D - A
\]

normalized-\(L \) \(= I - D^{-1/2} A D^{-1/2} \)

\[
D = \begin{pmatrix}
d_1 & 0 & \cdots & 0 \\
0 & d_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_n
\end{pmatrix}
\]

- **Solution**: \(S \) are the eigenvectors of \(L \) with smallest eigenvalues (except the first one)

- Post-Processing: apply k-means to \(S \)

- a.k.a. **Spectral Clustering**
Modularity Maximization

- **Modularity** measures the group interactions compared with the expected random connections in the group.

- In a network with m edges, for two nodes with degree d_i and d_j, the expected random connections are:
 \[\frac{d_i d_j}{2m} \]

- The interaction utility in a group:
 \[\sum_{i \in C, j \in C} A_{ij} - \frac{d_i d_j}{2m} \]

- To partition the group into multiple groups, we maximize:
 \[\max \frac{1}{2m} \sum_{C} \sum_{i \in C, j \in C} A_{ij} - \frac{d_i d_j}{2m} \]

Expected Number of edges between 6 and 9 is
\[5\times 3/(2\times 17) = 15/34 \]
The modularity maximization can also be formulated in matrix form

\[Q = \frac{1}{2m} Tr(S^T B S) \]

\[B_{ij} = A_{ij} - d_i d_j / 2m \]

Solution: top eigenvectors of the modularity matrix
Properties of Modularity

- **Properties of modularity:**
 - Between (-1, 1)
 - Modularity = 0 if all nodes are clustered into one group
 - Can automatically determine optimal number of clusters

- **Resolution limit of modularity**
 - Modularity maximization might return a community consists multiple small modules
Matrix Factorization Form

- For latent space models, block models, spectral clustering and modularity maximization
- All can be formulated as

\[
\begin{align*}
\max(\min)_{S} & \quad \text{Tr}(S^T XS) \\
\text{s.t.} & \quad S^T S = I
\end{align*}
\]

\[
X = \begin{cases}
\Delta(D) & \text{(Latent Space Models)} \\
\text{Sociomatrix} & \text{(Block Model Approximation)} \\
\text{Graph Laplacian} & \text{(Cut Minimization)} \\
\text{Modularity Matrix} & \text{(Modularity maximization)}
\end{cases}
\]
Recap of Network-Centric Community

- Network-Centric Community Detection
 - Groups based on Node Similarity
 - Groups based on Latent Space Models
 - Groups based on Cut Minimization
 - Groups based on Block-Model Approximation
 - Groups based on Modularity maximization

- **Goal**: Partition network nodes into several disjoint sets
- **Limitation**: Require the user to specify the number of communities beforehand
Hierarchy-Centric Community Detection
Goal: Build a hierarchical structure of communities based on network topology

Facilitate the analysis at different resolutions

Representative Approaches:
- Divisive Hierarchical Clustering
- Agglomerative Hierarchical Clustering
Divisive Hierarchical Clustering

- Divisive Hierarchical Clustering
 - Partition the nodes into several sets
 - Each set is further partitioned into smaller sets

- Network-centric methods can be applied for partition
- One particular example is based on edge-betweenness

- **Edge-Betweenness**: Number of shortest paths between any pair of nodes that pass through the edge
- Between-group edges tend to have larger edge-betweenness
Divisive clustering on Edge-Betweenness

- Progressively remove edges with the highest betweenness
 - Remove e(2,4), e(3, 5)
 - Remove e(4,6), e(5,6)
 - Remove e(1,2), e(2,3), e(3,1)
Agglomerative Hierarchical Clustering

- Initialize each node as a community
- Choose two communities satisfying certain criteria and merge them into larger ones
 - Maximum Modularity Increase
 - Maximum Node Similarity

(Based on Jaccard Similarity)
Recap of Hierarchical Clustering

- Most hierarchical clustering algorithm output a binary tree
 - Each node has two children nodes
 - Might be highly imbalanced

- Agglomerative clustering can be very sensitive to the nodes processing order and merging criteria adopted.

- Divisive clustering is more stable, but generally more computationally expensive
Summary of Community Detection

- The Optimal Method?
- It varies depending on applications, networks, computational resources etc.
- Scalability can be a concern for networks in social media
- Other lines of research
 - Communities in directed networks
 - Overlapping communities
 - Community evolution
 - Group profiling and interpretation
IMPLEMENTATIONS IN MAP-REDUCE
Scale of Networks

- **1970s:** \(10^1\) nodes (now considered as toy example)
- **1990s:** \(10^4\) nodes (say, coauthorship network)
- **Nowadays:** \(>10^8\) nodes
 - Mail, Messenger, Facebook, Twitter, LinkedIn
 - May contain other meta information about nodes and edges
 - Exceed memory limits of a “luxury” workstation
 - Require considerable storage

- **e.g., Yahoo IM graph**
 - hundreds of millions of nodes
 - billions of connections
 - occupies more than 300 GB

Networks are scale-free; But algorithms are NOT.
MapReduce

- Inspired from the primitives of Lisp for list processing
- Fundamental idea: move computation to data
- Mapper: \(<\text{key}_{\text{in}}, \text{value}_{\text{in}}> \rightarrow \langle \text{key}_{\text{intermediate}}, \text{value}_{\text{intermediate}} \rangle\>
- Reducer: \(<\text{key}_{\text{intermediate}}, \{\text{value}_{\text{intermediate}}\}> \rightarrow \langle \text{key}_{\text{out}}, \text{value}_{\text{out}} \rangle\>
MapReduce Example

- Essentially a distributed grep-sort-aggregate
- Word-Count example
- Unix Pipe: `cat input | emitword | sort | uniq -c`
- MapReduce: Mapper, Reducer

```perl
sub emitword{
    while ( my $line = <STDIN>){
        chomp $line;
        my @words = split ' ', $line;
        foreach my $word (@words){
            # emit (word, 1)
            print $word, "\t", 1, "\n";
        }
    }
}
```

Taken care by MapReduce Framework
Hadoop

- An open source implementation to MapReduce
- Very easy to install and use (you can install Hadoop in your local box in few minutes)
- **Hadoop is Not …**
 - Not for high availability (failures happen all the time)
 - Not designed for low latency
 - Not geographically distributed
 - Hadoop cluster does not span over multiple colos
- **Good for**
 - Fault tolerance in scale; transparent to users
 - High throughput for processing data
Existing Solutions other than Hadoop

- **Approximation:**
 - Subsample a network
 - Identify communities in the small network
 - Recover the community structure of the whole graph (Nystrom’s method)

- **METIS: Multi-Level Method for Graph Partition**
 - Coarse a network level by level into a small graph
 - Partition the small graph
 - Recover the partition of the original graph by uncoarsing gradually

- **MPI-based solutions**
 - ParMETIS: Distributed version of METIS
 - PARPACK: Parallel ARPACK
Software based on Hadoop

 - Hadoop-based large scale social network analysis
 - Support some commonly-used SNA metrics
 - connected components, bi-connected components
 - communities: k-core, maximal cliques
 - PagRank, HITS, clustering coefficient
 - Not (well) documented

- **Mahout**: http://mahout.apache.org/
 - Scalable Machine Learning and Data Mining Library
 - Include some clustering implementations
 - k-means clustering, Dirichlet process clustering, LDA
 - spectral clustering (only binary case), SVD
 - Not very mature and stable yet
For practical use with huge networks:
- Consider the connections as features
- Use Cosine or Jaccard similarity to compute vertex similarity
- Apply classical k-means clustering Algorithm

K-means Clustering Algorithm
- Each cluster is associated with a centroid (center point)
- Each node is assigned to the cluster with the closest centroid

Algorithm 1 Basic K-means Algorithm.

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
k-means in MapReduce

- **Initialization:**
 - represent network data in proper format: *adjacency list*
 - Normalization: assign proper weights to each edge
 - Random select some vertices as cluster centroids

- **Iterate until convergence**
 - **Mapper:**
 - Broadcast the centroid info to all cluster nodes
 - For each vertex
 - compute its similarity to each centroid
 - Assign the vertex to the cluster of the closest centroid
 - Emit (cluster_ID, vertex)
 - **Reducer:**
 - For each cluster_ID
 - aggregate its member vertices info to compute the new centroid
Clustering in Directed Networks

- Many networks are directed
 - mail, messenger, twitter following-follower
- Assuming separate communities for rows & columns

\[A \approx R_k G_{k \times \ell} C_{\ell} \]

- \(R \): the community assignment in rows
- \(C \): the community assignment in columns
- \(G \): the interaction density between \(R \) and \(C \) communities
Algorithm

Procedure 1 CC (A, k, l)

1: Initialize r and c.
2: Compute the group statistics matrix G.
3: repeat
4: for each row \(i = 1..m \) do
5: for each row group label \(p = 1..k \) do
6: Assign \(r(i) \leftarrow p \) if this minimizes error
7: Update G, r
8: Do the same for columns
9: until cost does not decrease
10: return r and c
Implementation in Hadoop

Mapper:
Broadcast G and c
Assign community for each row;
Emit (cluster_ID, row_statistics)

Reducer:
Update Group statistics

Procedure 2 CCRowMapper \((k, v)\)

Globals: Cluster statistics \(G\), labels \(c\)
Source node is \(i \equiv k\)
Adjacency list of \(i\) is \(a_i; \equiv V\)
Compute row statistics \(g_i := \text{ROWSTATISTICS}(a_i, c)\)

for each group label \(p = 1..k\) do
 if assigning \(i\) to \(p\) would lower cost then
 \(r(i) \leftarrow p\)
 emit \((r(i), (g_i, \{i\}))\)

Procedure 3 CCRowReducer \((k, V)\)

Row group label is \(p \equiv k\)
Initialize \(g_p \leftarrow 0, I_p \leftarrow \emptyset\)

for each map value \((g, I) \in V\) do
 \(g_p \leftarrow \text{COMBINESTATISTICS}(g_p, g)\)
 \(I_p \leftarrow I_p \cup I\)
 emit \((p, (g_p, I_p))\)
Update the group interaction matrix G

Post-processing:
Update G and r

```markdown
**Procedure 4 COLLECTRESULTS**

Initialize $G \leftarrow 0$, $r \leftarrow 0$

for reduce output $\langle p, (g_p, I_p) \rangle$ do

$g_p \leftarrow g_p$

$r(i) \leftarrow p$, for all $i \in I_p$

return $G$ and $r$
```

Update the column community is essentially a similar process. Involve *multiple iterations of MapReduce*
Limitations

- Some information are **broadcasted to all cluster nodes**
 - K-means for undirected network: centroid info
 - Clustering for directed network: the group assignment, group interaction matrix

- **If the number of communities is huge, or soft clustering**
 - the info cannot be loaded into the memory of one cluster node
 - the broadcasting process may take a while
 - Implementations in that case becomes quite messy 😞
 - Need multiple MapReduce tasks to achieve one single iteration.

- **Look ahead**
 - Soft clustering on graphs with Hadoop
 - Community structure in large networks follow some pattern. Should we adopt a different procedure?
Social Computing Application

PREDICTION VIA SOCIAL CONNECTIONS
Network-based Prediction

- User Preference or Behavior can be represented by labels (+/-)
 - Whether or not clicking on an ad
 - Whether or not interested in certain topics
 - Subscribed to certain political views
 - Like/Dislike a product

- **Given:**
 - A social network (i.e., connectivity information)
 - Some actors with identified labels

- **Output:**
 - Labels of other actors within the same network
Approach I: Collective Inference

- **Markov Assumption**
 - The label of one node depends on that of its neighbors

- **Training**
 - Build a relational model based on labels of neighbors

- **Prediction --- **Collective\ inference**
 - Predict the label of one node while fixing labels of its neighbors
 - Iterate until convergence

- **Same as classical thresholding model in behavior study**
Heterogeneous Relations

- Connections in a social network are heterogeneous
- Relation type information in social media is not always available
- Direct application of collective inference to social media treats all connections equivalently
Social Dimensions

Challenge: Relation (affiliation) information is unknown.

1) How to extract the social dimensions?
 - Actors of the same affiliation interact with each other frequently
 - Community Detection

2) Which affiliations are informative for behavior prediction?
 - Let label information help → Supervised Learning

<table>
<thead>
<tr>
<th></th>
<th>ASU</th>
<th>Fudan</th>
<th>High School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lei</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Actor₁</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Actor₂</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
</tbody>
</table>
Approach II: Social-Dimension Approach (SocioDim)

- **Training:**
 - Extract social dimensions to represent potential affiliations of actors
 - Any community detection methods is applicable (block model, spectral clustering)
 - Build a classifier to select those discriminative dimensions
 - Any discriminative classifier is acceptable (SVM, Logistic Regression)

- **Prediction:**
 - Predict labels based on one actor's latent social dimensions
 - No collective inference is necessary
An Example of SocioDim Model
Communities are features!!

- Community detection can be used to differentiate connections in networks
 - One is likely to participate in multiple communities

- Community membership of one node become features

- Community-based learning outperforms collective inference, especially for social media networks

- Enable integration of node features and network information
References

Thank You!

Please feel free to contact Lei Tang (L.Tang@asu.edu) if you have any questions!