Nightmare at Test Time: Robust Learning by Feature Deletion

-- Amir Globerson and Sam Roweis
ICML’06

Presented by Lei Tang
Why Robust Learning?

- Non-stationary feature distribution for training and test data
- Small Samples/ Imbalanced Class distribution
- Adversarial classification (Spam filtering)
- Data with Uncertainty
- A specific situation: A feature presented at training data but disappear (change to 0) in test data
Intuition of Robust Learning

- 3 stocks A, B, C with the same risk
- If you are going to investigate $3000 on stocks.
- Strategy 1: $3000->A
- Strategy 2: $1000->A, $1000->B, $1000->C
- Which one to choose?
- Do not assign any feature with too much weight. (Regularization term like |w|^2 ??)
Game Theory (Min-Max)

- Consider an adversarial situation:
- Two Players:
 - P1: Build Classifier
 - P2: Delete features during testing

- What’s P1’s policy?
- --Maximize the worst performance
For each instance x_i, the worst case hinge loss is:

$$h_{wc}(w, y_i x_i) = \max \left[1 - y_i w \cdot (x_i \circ (1 - \alpha_i)) \right]_+$$

s.t. $\alpha_i \in \{0, 1\}$

$$\sum_j \alpha_{ij} = K$$

For the whole data set, w should be

$$w^* = \arg \min_w \frac{1}{2} \|w\|^2 + C \sum_i h_{wc}(w, y_i x_i)$$
\[h^{wc}(w, y_i x_i) = \left[1 - y_i w^T x_i + s_i \right]_+ , \]

where we have defined

\[s_i = \max_{\alpha_i \in \{0, 1\}, \sum \alpha_i = K} y_i w \cdot (x_i \circ \alpha_i) \]

Solution:
choose those features with maximal \(y_i w x_{ij} \)

The solution won’t change if we relax \(\alpha \) to be \([0, 1]\)
New formulation

\[s_i = \max \quad y_i (w \circ x_i) \cdot \alpha_i \]
\[s.t. \quad 0 \leq \alpha_i \leq 1 \]
\[\sum_j \alpha_{ij} = K \]

Dual Form:

\[s_i = \min \quad Kz_i + \sum_j v_{ij} \]
\[s.t. \quad z_i + v_i \geq (y_i x_i \circ w) \]
\[v_i \geq 0 \]
\[
\begin{align*}
\min & \quad \frac{1}{2} \| w \|^2 + C \sum_i \left[1 - y_i w^T x_i + t_i \right]_+ \\
\text{s.t.} & \quad t_i \geq K z_i + \sum_j v_{ij} \\
& \quad v_i \geq 0 \\
& \quad z_i + v_i \geq (y_i x_i \circ w)
\end{align*}
\]
Discussion

- New Problem? Spam Filtering?
- Robust Learning favors keeping all the redundant features, how to run feature selection under robust learning scenario?