- Given the adjacency matrix A (with entries 0 or 1) $a_i = A^T A a_{i-1} \quad a_i = (A^T A)^i a_0$ $h_i = A A^T h_{i-1} \quad h_i = (A A^T)^i h_0$
- Co-citation: the number of pages co-cite P_i and P_j Co-reference: the number of pages co-referenced by P_i and P_j .
- $A^T A = D + C$ where C is the matrix of co-citation and $D = diag(d_1, d_2, \dots, d_j)$

$$C_{ij} = \sum_{k} A_{ki} A_{kj} = (A^{T} A)_{ij}$$
 $C_{ii} = 0$
 $d_{i} = \sum_{k} A_{ki} = \sum_{k} A_{ki} A_{ki} = (A^{T} A)_{ii}$

$$A^{T}A = D + C$$
, $AA^{T} = O + R$

- Given the adjacency matrix A (with entries 0 or 1) $a_i = A^T A a_{i-1} \quad a_i = (A^T A)^i a_0$ $h_i = A A^T h_{i-1} \quad h_i = (A A^T)^i h_0$
- Co-citation: the number of pages co-cite P_i and P_j Co-reference: the number of pages co-referenced by P_i and P_j .
- $A^TA = D + C$ where C is the matrix of co-citation and $D = diag(d_1, d_2, \dots, d_j)$

$$C_{ij} = \sum_{k} A_{ki} A_{kj} = (A^{T} A)_{ij}$$

$$C_{ii} = 0$$

$$A^T A = D + C$$
, $AA^T = O + R$

- Given the adjacency matrix A (with entries 0 or 1) $a_i = A^T A a_{i-1} \quad a_i = (A^T A)^i a_0$ $h_i = A A^T h_{i-1} \quad h_i = (A A^T)^i h_0$
- Co-citation: the number of pages co-cite P_i and P_j Co-reference: the number of pages co-referenced by P_i and P_j .
- $A^TA = D + C$ where C is the matrix of co-citation and $D = diag(d_1, d_2, \dots, d_i)$

•

$$C_{ij} = \sum_{k} A_{ki} A_{kj} = (A^{T} A)_{ij}$$
 $C_{ii} = 0$
 $d_{i} = \sum_{k} A_{ki} = \sum_{k} A_{ki} A_{ki} = (A^{T} A)_{ii}$

$$A^TA = D + C$$
, $AA^T = O + R$

- Given the adjacency matrix A (with entries 0 or 1) $a_i = A^T A a_{i-1} \quad a_i = (A^T A)^i a_0$ $h_i = A A^T h_{i-1} \quad h_i = (A A^T)^i h_0$
- Co-citation: the number of pages co-cite P_i and P_j Co-reference: the number of pages co-referenced by P_i and P_j .
- $A^TA = D + C$ where C is the matrix of co-citation and $D = diag(d_1, d_2, \dots, d_i)$

•

$$C_{ij} = \sum_{k} A_{ki} A_{kj} = (A^{T} A)_{ij}$$
 $C_{ii} = 0$
 $d_{i} = \sum_{k} A_{ki} = \sum_{k} A_{ki} A_{ki} = (A^{T} A)_{ii}$

$$A^TA = D + C$$
. $AA^T = O + R$

Probabilistic analysis

Expected value of co-citation/co-reference

For a fixed degree sequence random graphs

$$E(C_{ik}) = \frac{d_i d_k}{n-1}$$

$$E(R_{ik}) = \frac{o_i o_k}{n-1}$$

The node with large indegree d_i tend to have large co-citations with other nodes.

$$E(A^TA) = E(D) + E(C) = diag(h_1, h_2, \dots, h_n) + \mathbf{dd}^T/n - 1$$

where $h_1 \equiv d_1 - d_1^2/(n-1)$ and $\mathbf{d} \equiv (d_1, d_2, \dots, d_n)^T$

Probabilistic analysis

Expected value of co-citation/co-reference

For a fixed degree sequence random graphs

$$E(C_{ik}) = \frac{d_i d_k}{n-1}$$

$$E(R_{ik}) = \frac{o_i o_k}{n-1}$$

The node with large indegree d_i tend to have large co-citations with other nodes.

$$E(A^{T}A) = E(D) + E(C) = diag(h_1, h_2, \dots, h_n) + \mathbf{dd}^{T}/n - 1$$

where
$$h_i \equiv d_i - d_i^2/(n-1)$$
 and $\mathbf{d} = (d_1, d_2, \dots, d_n)^T$.

Spectral Decomposition of Diagonal Plus Rank-1 matrices

Let $M = D + cc^T$, D is a diagonal $n \times n$ matrix of the block form:

$$D = diag(\tau_1 I_1, \tau_2 I_2, \cdots, \tau_l I_l)$$

where I_k is the identity matrix of size n_k , $\tau_1 > \tau_2 > \cdots > \tau_l$ **Then**, the eigenvalues of M are given by

$$\hat{\tau_1} > \underline{\tau_1 = \dots = \tau_1} > \hat{\tau_2} > \underline{\tau_2 = \dots = \tau_2} > \dots > \hat{\tau_l} > \underline{\tau_l = \dots = \tau_l}$$

and the eigenvector of A corresponds to the eigenvalue $\hat{\tau_k}$ is

$$\left(\frac{c_1^T}{\hat{\tau}_1-\tau_1},\frac{c_2^T}{\hat{\tau}_2-\tau_2},\cdots,\frac{c_l^T}{\hat{\tau}_l-\tau_l}\right)^T$$
.

The eigenvector corresponds to τ_k is of the form

$$(0\cdots 0, u_k^T, 0\cdots 0)^T$$

where u_k is a vector of n_k satisfying $c_k^T u_k = 0$.

Average Analysis of HITS

$$E(A^T A) = E(D) + E(C) = diag(h_1, h_2, \dots, h_n) + \mathbf{dd}^T / n - 1$$

where $h_i \equiv d_i - d_i^2 / (n - 1)$ and $\mathbf{d} = (d_1, d_2, \dots, d_n)^T$.

If $h_1 > h_2 > \cdots > h_m \geq h_{m+1} \geq \cdots \geq h_n$, Then, the m largest eigenvalues λ_i satisfying

$$\lambda_1 > h_1 > \lambda_2 > h_2 > \cdots > \lambda_m > h_m$$

the corresponding eigenvectors are

$$\mathbf{u}_k = (\frac{d_1}{\lambda_k - h_1}, \frac{d_2}{\lambda_k - h_2}, \cdots, \frac{d_n}{\lambda_k - h_n})$$

Prerequisite

$$h_i - h_j = (d_i - d_j)[1 - (d_i + d_j)/(n-1)] > 0$$
 as long as $d_1 > \dots > d_m > d_{m+1} \ge d_{m+1} \ge d_{m+2} \dots \ge d_m$ and $d_i + d_j < n-1$ for $\forall i,j$

Average Analysis of HITS

$$E(A^T A) = E(D) + E(C) = diag(h_1, h_2, \dots, h_n) + \mathbf{dd}^T / n - 1$$

where $h_i \equiv d_i - d_i^2 / (n - 1)$ and $\mathbf{d} = (d_1, d_2, \dots, d_n)^T$.

If $h_1 > h_2 > \cdots > h_m \geq h_{m+1} \geq \cdots \geq h_n$, Then, the m largest eigenvalues λ_i satisfying

$$\lambda_1 > h_1 > \lambda_2 > h_2 > \cdots > \lambda_m > h_m$$

the corresponding eigenvectors are

$$\mathbf{u}_k = \left(\frac{d_1}{\lambda_k - h_1}, \frac{d_2}{\lambda_k - h_2}, \cdots, \frac{d_n}{\lambda_k - h_n}\right)$$

Prerequisite

$$h_i - h_j = (d_i - d_j)[1 - (d_i + d_j)/(n-1)] > 0$$
 as long as $d_1 > \dots > d_m > d_{m+1} \ge d_{m+1} \ge d_{m+2} \dots \ge d_n$ and $d_i + d_j < n-1$ for $\forall i, j$

Average Analysis of HITS

$$E(A^T A) = E(D) + E(C) = diag(h_1, h_2, \dots, h_n) + \mathbf{dd}^T / n - 1$$

where $h_i \equiv d_i - d_i^2 / (n - 1)$ and $\mathbf{d} = (d_1, d_2, \dots, d_n)^T$.

If $h_1 > h_2 > \cdots > h_m \geq h_{m+1} \geq \cdots \geq h_n$, Then, the m largest eigenvalues λ_i satisfying

$$\lambda_1 > h_1 > \lambda_2 > h_2 > \cdots > \lambda_m > h_m$$

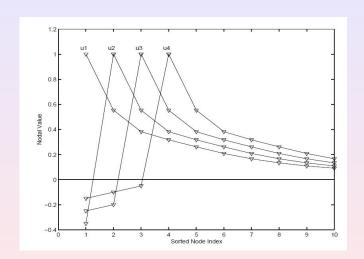
the corresponding eigenvectors are

$$\mathbf{u}_k = \left(\frac{d_1}{\lambda_k - h_1}, \frac{d_2}{\lambda_k - h_2}, \cdots, \frac{d_n}{\lambda_k - h_n}\right)$$

Prerequisite

$$h_i - h_j = (d_i - d_j)[1 - (d_i + d_j)/(n-1)] > 0$$
 as long as $d_1 > \dots > d_m > d_{m+1} \ge d_{m+1} \ge d_{m+2} \dots \ge d_n$ and $d_i + d_j < n-1$ for $\forall i, j$

Eigenvectors



HITS = ranking according to indegrees??

For any i < j

$$\mathbf{u_1}(i) - \mathbf{u_1}(j) = \frac{d_i}{\lambda_1 - h_i} - \frac{d_j}{lambda_1 - h_j}$$

$$= \frac{(d_i - d_j)[\lambda_1 - d_i d_j/(n-1)]}{(\lambda_1 - h_i)(\lambda - h_j)}$$

$$\geq 0$$

as
$$\lambda_1 - d_i d_j / (n-1) > h_i - d_i d_j / (n-1) = d_i (1 - \frac{d_i + d_j}{n-1}) > 0$$

What's the nature of AVERAGE?

The authority ranking is, ON AVERAGE, identical to the ranking according to web page indegrees.

HITS = ranking according to indegrees??

For any i < j

$$\mathbf{u_1}(i) - \mathbf{u_1}(j) = \frac{d_i}{\lambda_1 - h_i} - \frac{d_j}{lambda_1 - h_j}$$

$$= \frac{(d_i - d_j)[\lambda_1 - d_i d_j/(n-1)]}{(\lambda_1 - h_i)(\lambda - h_j)}$$

$$\geq 0$$

as
$$\lambda_1 - d_i d_j / (n-1) > h_i - d_i d_j / (n-1) = d_i (1 - \frac{d_i + d_j}{n-1}) > 0$$

What's the nature of AVERAGE?

The authority ranking is, ON AVERAGE, identical to the ranking according to web page indegrees.