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ABSTRACT

The explosion of online content has made the management of
such content non-trivial. Web-related tasks such as web page
categorization, news filtering, query categorization, tag rec-
ommendation, etc. often involve the construction of multi-
label categorization systems on a large scale. Existing multi-
label classification methods either do not scale or have un-
satisfactory performance. In this work, we propose MetaLa-
beler to automatically determine the relevant set of labels for
each instance without intensive human involvement or ex-
pensive cross-validation. Extensive experiments conducted
on benchmark data show that the MetaLabeler tends to out-
perform existing methods. Moreover, MetaLabeler scales to
millions of multi-labeled instances and can be deployed eas-
ily. This enables us to apply the MetalLabeler to a large
scale query categorization problem in Yahoo!, yielding a sig-
nificant improvement in performance.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database applications—
Data Mining; H4.m [Information Systems]: Miscella-
neous

General Terms

Algorithms, Experimentation

Keywords

MetaLabeler, Multi-label Classification, Large Scale, Hier-
archical Classification, Query Categorization, Meta Model

1. INTRODUCTION

The rapid growth of online content has made it critical to
develop methods that facilitate easy storage, searching, and
retrieval of such content. One such methodology involves
placing web data into hierarchies or catalogs. While human
editors can manually categorize data into taxonomies, such
editorial effort does not scale well to the size of online con-
tent. Furthermore, different types of online content such
as HTML documents, images, video, social network graphs,
etc. require domain-specific handling. Hence, the develop-
ment of a scalable and automated categorization system is
important.
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The problem of developing accurate text-classifiers has
been well studied in the machine learning communities. One
such approach is Support Vector Machine (SVM) classifica-
tion. SVMs have been shown to have exceptional perfor-
mance in the categorization of large quantities of data in
very high-dimensional spaces [11]. Two aspects of online
data, however, make it difficult to directly apply SVM cat-
egorizers in that domain.

e The data is multi-class. Textual data such as web-
pages can be classified into many categories. The Ya-
hoo! Directory, for instance, has a few million nodes
into which web-pages are categorized.

e The data is multi-label. Data such as queries, web-
pages, products, and even users can have more than
one label. For instance, a query such as “Jaguar” can
have a label set containing Animals, Software, and Au-
tomotive classes.

A commonly used approach to address multi-class classifi-
cation is to decompose the multi-class problem into a num-
ber of binary problems. For instance, in the One-vs-Rest
(also known as One-vs-All) approach a decision boundary
is learned independently for each individual class by treat-
ing all the instances belonging to that class as positive and
all the other instances as negative. During scoring, a data
point is assigned to the class for which it has a maximum
positive score. Despite its simplicity, the One-vs-Rest ap-
proach yields good performance in practice. In fact, when
tuned carefully, this method has been shown to outper-
form other complex output-space decomposition methods
and even multi-class SVMs [20].

One-vs-Rest approach could be extended to multi-label
prediction as well by choosing as the set of classes for which
the data point has a positive score. A drawback with this
approach is that some of the binary classification problems
can be highly imbalanced [9, 22]. The default threshold of
SVM decision function is typically optimized for accuracy
and could lead to a biased prediction toward the negative
class. One possible solution is to tune a threshold based
on cross-validation according to some performance evalua-
tion metric such as Fl-measure. This thresholding strategy
is demonstrated to improve the performance of the vanilla
One-vs-Rest SVM [15, 7]. However, learning thresholds for
each class in large scale applications is computationally ex-
pensive as there are typically a very large number of classes.

Recently, there has been a lot of efforts in addressing the
multi-label problem [26]. However, most of the proposed
approaches [8, 25, 28, 33, 34] are either classifier-specific
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or do not scale to the size of web data. For instance, a
real-world query categorization problem we have! consists
of roughly 1.5 million queries in more than 6000 categories,
which requires a scalable and efficient multi-label classifier.
In this work, we propose a simple and effective approach
called MetaLabeler which in conjunction with an One-vs-
Rest SVM handles multi-label prediction easily. The pro-
posed approach automatically identifies the right number of
relevant labels for each instance without the need for ex-
pensive cross-validation. Moreover, our model does not rely
on the underlying classifier and scales well to the size of
the data as well to the number of underlying classes. We
conduct extensive experiments to compare our model with
other baseline methods both on benchmark data and a real-
world query categorization application. It can be seen that
the proposed solution tends to outperform other methods,
especially when the underlying classifier makes use of meta-
information about the classes, such as class hierarchies.

2. RELATED WORK

Multi-label classification studies the problem in which a
data instance can have multiple labels [26]. This phenomenon
prevails in a variety of tasks including document filtering,
text categorization [15], web mining [17], tag recommen-
dation in social bookmarking system [12], etc. Many ap-
proaches have been proposed to address multi-label classi-
fication, including margin-based methods, structural SVMs
[25], parametric mixture models [28], k-nearest neighbors [33],
maximum entropy models [8, 34], and ensemble methods [29,
27]. Most of these methods utilize the relationship between
multiple labels for collective inference. There have also been
attempts to find a low-dimensional subspace shared among
multiple labels [10, 31]. Unfortunately, most of the proposed
methods do not scale to our needs with millions of data in-
stances in thousands of categories.

For large scale multi-label categorization system, One-vs-
Rest approach, which builds binary classifiers independently
for each category, is still widely used [15, 16]. A post-
processing step that can set thresholds according to some
evaluation measure like macro-F1 or micro-F1 avoids the
expensive training procedure of the above mentioned ap-
proaches. Yang [30] studied three different thresholding
strategies: rank-based cut, proportion-based cut, and score-
based cut and compared the pros and cons for each strat-
egy. An exploration of various cross-validation schemes and
heuristics for score-based approach is detailed in [7].

In real-world systems, data is typically organized into hier-
archies [3, 17, 24, 23]. Utilizing the hierarchy has been shown
to yield performance improvements over the flat classifiers
[4, 14]. Margin-based methods that take into consideration
the similarities of different categories in the taxonomy have
been proposed [1, 25, 21]. Alternatively, smoothing meth-
ods that utilize the dependency information in the hierar-
chy have also been shown to yield performance improve-
ments [18, 19]. However, the computational complexity in-
volved in training and deploying these models is a deterrent
to their adoption in large scale categorization systems.

3. MULTI-LABEL PREDICTION

The main focus of this work, is to classify the textual
data found on the World Wide Web into a set of pre-defined

'More details discussed in Section 6.1.
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categories or classes. The set of classes can be large and may
or may not have dependencies, such as a class hierarchy,
defined on it. Let K denote the set of classes associated
with a given categorization task. Each class has a set of
data points associated with it, say X € RY*M where M
represents the dimensionality of feature space. Each data
point can have one or more class labels associated with it.
Let y € {0, 1}K be a class-vector corresponding to a data
point x. Given a new data point x that was unseen at the
time of training, the goal is to be able to identify (with good
precision and recall) the set of classes § associated with x,
such that § is close to the true class-vector y.

We break the above problem into two steps.

e Step 1: To obtain a ranking of class membership for
each instance x into the set of K classes.

e Step 2: To predict the number of top classes to be
returned from the ranking.

3.1 Obtaining Class Member ship Ranking

Given a data point x, we first want to obtain a vector
f(x) € R¥ where the score fi(x) denotes the class member-
ship of x in class ¢ where ¢ = 1,--- , N. While there exists
several ranking classifiers, we choose the One-vs-Rest SVM
because of its superior performance in the multi-class text
categorization task [11, 20]. The scores output by the binary
SVMs are then used to get a ranking of the class member-
ship for x. Given data instances X € RV *M with class-label
vector Y € {0,1}V*¥ a decision function f is built for each
of the K classes by considering the instances belonging to
a class as positive and all the other instances as negative.
Restricting ourselves to linear SVMs, each of the decision
functions predicts a score for an instance x as below:

fr(@) = Wi x + by (1)

where wy is the weight vector and by, is the bias term associ-
ated with class Cj. Given a test instance x, we classify it as
category Cy if fi(x) > 0. The score vector f(x) can also be
used to rank the class membership of x in the K categories.

3.2 Metalabeler: Predictingthe Top-n Classes

To determine the top-n classes from the score vector, we
learn a function from the data to the number of labels. This
involves two steps.

e Constructing the meta dataset.
e Learning a meta-model.

We use the toy example in Table 1 to illustrate the con-
struction of meta data. Consider the data in Table 1la con-
sisting of 4 instances in 4 categories. The label of the meta
data (shown in Table 1b) is the number of labels for each
instance in the raw data. For example, x2 belongs to C1,
C3 and Cy in the raw data. The corresponding meta label is
then 3. Assume that the raw data x has been transformed
into the meta data ¢(x), a mapping from the meta data
to the meta label then could be learned. There are several
approaches for constructing the meta dataset:

Content-based MetaLabeler The simplest approach is
to use the raw data as it is. That is,

P(x) =x (2)
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Table 1: Construction of Meta Data

Data Labels Meta Feature | Meta Label
X1 C1 ; Cg ¢(X1) 2
X2 C1,CQ,C4 d)(Xz) 3
X3 02 (Z)(X3) 1
X4 Cs,C3 o(x4) 2

(a) Raw Data (b) Meta Data

Score-based MetaLabeler The score vector of each label
f(x) can be considered as a summary of the instance
associated with the set of labels and could be used as
the meta data. Hence,

P(x) = [(/1(x), f2(x), -+, fr (%)] ®3)

where f;(x) is the prediction score for each category.

Rank-based MetaLabeler Intuitively, if the gap among
the prediction scores of top-ranking categories is small,
it is likely that the data instance belongs to all the top-
ranking classes. This suggests another method for con-
structing meta data based on ranked prediction scores:

P(x) = P(f1(x), fo(x),- -+, [r (x)) (4)

where 9 is a function that sorts the scores and ¥ (x) is
a vector of sorted scores.

Based on the constructed meta data, we learn a mapping
function from the meta features to the meta label (ymr),
that is, the number of labels. A natural choice is regression.
However, the prediction of the meta-model in such case is
not necessarily an integer (say, 2.5 labels), and we need to
determine whether 2 or 3 labels are actually associated with
the data instance. To avoid this dilemma, we consider the
meta learning as a multi-class classification problem, and
once again resort to the One-vs-Rest strategy as it is effi-
cient, scalable yet effective. The detailed algorithm is sum-
marized in Figure 1, in which we have an optional parameter
A to set the maximum number of labels for prediction. The
training data might include some outliers with a large class
label set, the utility of which is suspect, and the cut-off can
help remove such outliers.

3.3 Prediction

As for prediction, the One-vs-Rest SVM works in conjunc-
tion with the MetalLabeler as follows:

1. Given an instance x, obtain its class membership rank-
ing based on the score vector f(x).

2. Construct the input to the meta model ¢(x) for each
x using either the content-based, score-based or rank-
based approach.

3. Predict the number of labels yarr, for instance x based
on the meta-model.

Pick the top yarr highest scoring categories as the la-
bels for prediction.

In this section, we have proposed a simple, yet efficient
solution to the problem of multi-label classification. Note
that the proposed algorithm is classifier agnostic as both the
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Multi-label data (X, Y);
Maximum number of labels: A;

Output: Meta-model M (x).
1. Construct meta data ¢(X) from raw data X;
2. Construct meta label ym1 = [Y|;
3. Set the maximum number of labels:

yMmL(ymL > A) = A;

4. Learn M (x) via One-vs-Rest SVM on (¢(X), ymr);

Input:

Figure 1: Algorithm for MetaLabeler

ranking classifier as well as the MetaLabeler can be designed
with any powerful classifier or ranking algorithm.

Our proposed MetalLabeler, especially the score-based Met-
aLabeler might appear similar to stacking. Stacking [5] is an
ensemble method in which meta-model is learned based on
the probability distributions of multiple heterogeneous clas-
sifiers. However, the motivation of Metal.abeler is to predict
the number of labels for each instance whereas stacking is
proposed to combine different classifiers.

3.4 Other Approaches

In this section, we sketch other approaches that have been
proposed for the problem of multi-label classification. All of
these approaches assume that there exists a classifier that
can provide scores indicative of class memberships. The
scores that are produced are then used to determine the
set of labels that are to be predicted for the data instance x.
These thresholding strategies typically fall into three cate-
gories [30]:

Rank-based cut (RCut) RCut assigns labels based on the
ranking of class labels for each data point x. The rank-
ing could be obtained by sorting the prediction scores.
Based on the ranking, x is assigned to the top n cat-
egories, where n is a user specified parameter. Typi-
cally, n is set to the average length of class labels in
the training data. Suppose instances in a dataset have
3.5 labels on average, n could be set to either 3 or 4.

Proportion-based cut (PCut) In this method, for each
category C, the test instances are sorted by the scores
for C'x and the top t instances are predicted as belong-
ing to class C. Here, t is computed based on the prior
probability of Cj estimated on the training data. PCut
requires the prediction scores for all the test data and
hence is seldom used in real-world applications where
test data arrives in an online fashion.

Score-based local optimization (SCut) SCut tunes the
threshold for each category based on improving a user
defined performance measure. The SCut strategy was
optimized for different evaluation criteria in [7].The ba-
sic idea is to split the training data into different folds
and cycle through each category to tune the threshold
based on the performance on the validation data.

Based on extensive experiments with the k-nearest neigh-
bor classifier on 5 different text corpora, Yang [30] concluded
that the SCut approach tends to overfit and is unstable
across different datasets while PCut is more stable. How-
ever, PCut requires access to all of the test data to make a
prediction, ruling out its utility in most real-world applica-
tions. A comparison of SCut versus RCut for hierarchical
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SVMs with the different thresholding strategies showed that
SCut outperforms RCut in terms of macro and micro F1 [17].

Comparing MetaLabeler with the above three approaches,
MetaLabeler can be considered as local RCut with n opti-
mized for each individual data instance. RCut mentioned
above presents a scheme to select the top-ranking labels
based on the parameter n, whose value is fixed globally. On
the contrary, the number of labels in MetaLabeler is deter-
mined dynamically by the supplied data instance.

4. EXPERIMENTAL METHODOLOGY

To show the efficacy of Metalabeler, extensive experi-
ments were conducted on two benchmark datasets. In this
section we explain the evaluation measure used, the experi-
mental setup, baseline methods, and details of the data used
in our experiments.

4.1 Evaluation Measures

The commonly used performance evaluation criteria for
multi-label classification are exact match ratio, micro-F1,
and macro-F1 [7]. Given test data X € RN*M let y;,¥; €
{0,1}* be the true label set and the predicted label set for
instance xj.

Exact Match Ratio is defined as

N
1

E t Match tio = — Iy =93

zact Match Ratio Nigzl lvi =il (5)

where I is the indicator function. Exact match ratio is es-
sentially the accuracy used for binary classification extended
to multi-label case. As seen in the above equation, exact
match ratio does not consider partial match between the
true labels and predictions. The alternatives which count
the partial match are macro-F1 and micro-F1.

Macro-F1 is the F1 averaged over categories.

K
1 k
Macro-F1 = % kil Ey (6)

For a category Cj, the precision (P*) and the recall (R¥)
are calculated as,

N ~ N ~
ph_ i WU e i YO
Zf\; gy va:1 yr

Then F1 measure, defined as the harmonic mean of pre-
cision and recall is computed as follows:

250 ylgr
N N -
Zi:l yf + Zz‘:l yf
Micro-F1 is computed using the equation of Ff and con-

sidering the predictions as a whole. More specifically, it is
defined as

2P*R*

FF = -
1 Pk + Rk

K N N
23 1 2 yrgr

K N K N ok
D k=1 2im Yy + D k=1 Dim i

According to the definition, macro-F1 is more sensitive to
the performance of rare categories while micro-F1 is affected
more by the major categories. In our experiments, all the
three measures are examined carefully.

Micro-F1 =

(7)
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Table 2: Characteristics of Yahoo! Data

Dataset N M K AvelL. MaxL
Arts 7441 17973 19  1.62 13
Business 9968 16621 17 1.55 11
Computers 12371 25259 23 1.48 17
Education 11817 20782 14 1.44 10
Entertainment | 12691 27435 14  1.40 14
Health 9109 18430 14 1.60 12
Recreation 12797 25095 18 1.41 17
Reference 7929 26397 15 1.15 10
Science 6345 24002 22 1.37 11
Social 11914 32492 21 1.24 10
Society 14507 29189 21 1.64 17

4.2 Basdine Methods

Three versions of MetaLabeler are tested: content-based
(Metac), score-based (Metas), and rank-based (Meta,). We
do not set any cut-off for maximum number of labels for Met-
aLabeler. We also compare our method with other thresh-
olding strategies:

e Vanilla SVM (SV M,). The One-vs-Rest SVM without
any post-processing procedure. During prediction, all
the labels with a positive score are selected.

e RCut with n equal to the average number of labels
per instance. Normally, the average number of labels
is not an integer. Hence, n can be set as either

n = |AveLabel| or n = [AveLabel].

The two versions are denoted as RCut. and RCut,,
respectively to indicate that the methods are conserva-
tive and aggressive in predicting the number of labels.

e SCut tuned based on micro-F1 (SCut;) or macro-F1
(SCut,). We follow the threshold tuning presented
as Algorithm 1 in [7]. Essentially, the threshold tun-
ing process cycles over each category to optimize the
desired performance measure. The final threshold is
the average of 5-fold cross validation. Two other al-
gorithms (SCutFBR.1 and SVM.1) presented in [7] re-
quire a heuristic fbr value to be provided by users or
selected from a set of values based on another layer
of cross-validation which could be computationally ex-
pensive.

We use linear SVMs [6] as the base classifier. The param-
eter C' in SVM is selected from a proper set of values. Note
that the vanilla SVM'’s performance is quite sensitive to this
parameter. We originally used the default value (C' = 1) for
the SVMs and it yielded extremely low accuracy on some of
the datasets. Typically, C' = 200 to 1000 gives much better
result for SV M,.

4.3 Datasets

The first benchmark dataset was extracted from the Ya-
hoo! directory. This multi-topic web categorization data
was used in [28, 10].The dataset consists of 11 independently
compiled subsets, each of which corresponds to a top-level
category in the Yahoo! Directory. In effect, this gives us
11 independent multi-label datasets. The data was pre-
processed following the methodology in [10]. We removed
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Table 3: Performance on Yahoo! multi-topic web page categorization data. The three horizontal blocks denote the exact
match ratio, micro-F1 and macro-F1 respectively. Each column denotes one data set. The entries in bold denote the best one
in each column. All the results are averaged over 30 runs. The last column Ave shows the results averaged over 11 data sets.

Arts | Busi. | Comp. Edu. | Enter. | Health Rec. Ref. Sci. | Social | Society Ave
SV M, 27.78 | 64.41 41.07 30.67 43.97 47.70 37.16 45.40 35.06 55.14 34.92 42.12
RCut, 34.50 54.41 47.13 38.95 52.63 43.19 48.09 | 60.95 48.74 64.01 40.79 48.49
RCut, 9.82 19.05 7.21 8.45 6.38 19.73 7.23 1.94 5.36 4.67 5.69 8.68
SCut, 24.58 | 60.39 37.68 | 28.40 | 44.78 46.37 | 38.42 | 46.20 | 37.40 | 52.51 10.26 | 38.82
SCut; 27.40 63.61 41.14 30.91 45.83 46.66 39.92 48.53 39.20 56.71 33.67 43.05
Meta. 35.85 64.15 | 48.94 | 41.02 | 53.55 52.79 | 50.28 59.28 49.48 | 64.05 38.60 | 50.73
Metas | 36.71 59.40 45.96 39.70 51.70 50.50 49.38 58.78 | 50.05 63.41 36.07 49.24
Meta, 20.50 | 59.03 36.76 | 22.94 | 42.76 39.49 | 32.28 | 46.91 | 35.73 | 48.16 17.62 | 36.56
SV M, 45.35 79.95 56.02 49.15 59.02 67.88 52.39 60.17 51.36 67.43 50.35 58.10
RCut. | 47.02 | 71.13 55.94 | 50.05 | 59.36 62.30 | 56.63 | 65.78 | 56.59 | 69.40 52.03 | 58.75
RCut, | 48.35 | 69.68 53.31 | 50.39 | 53.67 64.78 | 51.90 | 53.50 | 51.34 | 57.35 50.33 | 54.96
SCut, | 47.72 | 79.16 56.53 | 51.74 | 61.89 69.36 | 56.06 | 61.87 | 56.00 | 66.46 41.92 | 58.97
SCut; 49.04 | 80.19 58.63 | 52.54 | 62.25 69.49 | 56.53 | 63.26 | 57.06 | 69.10 53.96 | 61.10
Meta. 50.34 79.59 | 59.09 | 53.38 | 63.21 69.82 | 59.05 65.25 | 58.80 | 70.11 53.12 | 61.98
Metas | 50.79 | 78.23 58.26 | 52.93 | 61.88 69.36 | 58.67 | 65.09 | 59.17 | 69.80 51.43 | 61.42
Meta, 39.83 71.89 44.57 | 43.95 52.12 56.53 43.63 54.69 47.82 56.45 34.95 49.68
SVM, | 34.00 | 49.50 31.79 | 40.69 | 49.32 59.77 | 44.96 | 39.48 | 41.69 | 36.82 31.07 | 41.74
RCut. 34.92 30.30 26.13 41.47 46.13 43.16 46.20 50.29 46.42 38.14 31.31 39.50
RCut, | 39.58 | 38.15 32.87 | 44.06 | 46.39 56.58 | 47.35 | 40.43 | 46.00 | 36.16 36.83 | 42.22
SCut, 40.37 | 53.28 | 40.00 45.56 | 55.10 | 62.98 51.15 47.63 50.26 | 45.35 38.86 | 48.23
SCut; 37.98 51.60 36.42 44.54 54.01 62.23 50.12 44.92 48.88 42.33 36.23 46.30
Meta. 40.20 51.46 37.58 | 46.04 55.07 62.06 | 52.90 | 49.86 | 51.33 44.79 35.69 47.91
Metas | 40.40 49.26 36.95 45.14 52.74 61.45 52.55 49.78 52.03 43.46 34.14 47.08
Meta, | 31.84 | 39.87 27.09 | 35.95 | 43.77 44.75 | 37.95 | 40.92 | 40.97 | 34.58 24.71 | 36.58

those categories with less than 100 web pages, words occur-
ring less than 5 times and web pages with no topics. Each
web page was represented as a bag of words using the TF-
IDF encoding and was normalized to unit length. Table 2
summarizes some characteristics of the data. N, M, K rep-
resents the number of instances, dimensions and categories,
respectively. Avel. denotes the average number of labels per
instance, and MaxL denotes the maximum number of labels
for an instance. While the data has, less than 2 labels on
average per data point, one instance could have up to 17
labels. We randomly sampled 2000 instances for training
and the remaining are used for testing. This process was
repeated 30 times, and the averaged result is reported.

The second dataset used was the subsets of RCV1 [15].
The data is publicly available at LibSVM site?. As in the
case of the Yahoo! dataset there are 5 subsets, each with
3000 data instances for training and 3000 for testing, with in
total 101 categories. On average, each instance has around
3.22 labels and the maximum number of labels per instance
is 14. This dataset, different from previous data, is highly
imbalanced with the largest category having around 1400
instances and the smallest with only 1 instance in training
data. Note that 5-fold cross validation is not applicable for
the rare classes. Thresholds for SCut; and SCut,, in such
cases, were selected based on the tuning on the training data.

5. EXPERIMENTAL RESULTS

The performance of the different multi-label strategies is
shown in Tables 3 and 4. Each horizontal block in the table

Zhttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
multilabel.html

215

corresponds to an evaluation measure that is exact match
ratio, micro-F1, and macro-F1 respectively.

5.1 Performanceon Yahoo! Data

As observed in Table 3, RCut. and RCut, do not neces-
sarily improve over the performance of vanilla SVM. Specif-
ically RCut, which assigns labels aggressively is very likely
to make mistakes as indicated by the extremely low exact
match ratio score. SCuty, SCut;, Meta. and Metas, on
the other hand, achieve better performance than the vanilla
SVM. However, Meta,, performs worse than SV M,,.

A strong pattern observed in Table 3 is that Meta. tends
to outperform other methods in terms of exact match ratio
and micro-F1. The performances of SCut, and Meta. are
comparable with respect to macro-F1, as SCut, is the win-
ner in 6 out of the 11 datasets while Meta. wins on 4. Note
that the SCut strategies require cross-validation for each
class to choose thresholds whereas the MetaLabeler needs
to be tuned only once while training and is much more effi-
cient. The efficiency difference between these two methods
will be discussed in detail later.

The MetaLabeler could be considered as a local RCut
with the number of labels determined automatically. To
examine the difference, we plot the content-based Metal.-
abeler (Meta.) versus the conservative/aggressive RCut in
Figure 2 in terms of both micro-F1 and macro-F1. The x-
axis denotes the 11 datasets. It is evident that our method
by determining the number of labels dynamically for each
instance, achieves superior performance in most cases. A
similar trend is observed for exact match ratio as well.

Comparing the different meta labeling strategies, we ob-
serve that the content-based and score-based MetalLabeler
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Table 4: Performance on RCV1-subsets. The three blocks
are the exact match ratio, Micro-F1, and Macro-F1 respec-
tively. Ave denotes the averaged result over 5 subsets.

[ Suby Subo Subs Suby Subs | Ave
SV M, 39.93 40.07 41.67 39.37 38.10 39.83
RCut, 29.23 29.67 30.43 29.43 28.93 29.54
RCutq 3.13 3.90 3.63 3.47 2.97 3.42
SCut; 14.03 26.17 21.07 20.47 33.60 23.07
SCutg 14.97 24.13 15.70 20.93 33.90 21.93
Meta. | 43.23 43.60 44.30 42.93 42.20 | 43.25
Metas 26.13 33.20 33.00 36.23 18.40 29.39
Meta, 36.07 32.40 39.83 31.67 29.43 33.88
SV M, 72.88 73.69 73.91 72.98 72.84 73.26
RCut, 72.58 72.40 73.05 72.81 71.83 72.53
RCutq 69.15 69.01 69.30 69.52 68.27 69.05
SCut; 61.03 69.58 64.22 66.19 67.61 65.73
SCutg 63.53 70.56 63.54 68.81 70.57 67.40
Meta. | 74.52 74.67 75.13 74.92 74.04 | 74.66
Metas 66.53 73.18 72.97 72.23 67.50 70.48
Meta, 73.07 70.33 73.17 66.54 65.95 69.81
SV M, 35.01 35.75 34.12 33.04 34.47 34.48
RCut,. 39.31 38.43 37.50 40.16 37.46 38.57
RCutq 41.79 40.36 39.81 43.19 39.62 40.95
SCut; 33.06 35.03 32.59 32.86 33.70 33.45
SCutg 39.07 40.84 37.16 40.18 41.50 39.75
Meta, 43.47 43.57 42.13 42.98 41.31 | 42.69
Metas 32.28 40.84 41.97 38.25 41.20 38.91
Meta, | 44.90 39.55 38.23 28.34 27.87 35.78

are comparable with the former having a slight edge. Meta,
performs even worse than the vanilla SVM. This is possibly
due to the fact that it is important to have the prediction
scores associated with the class labels. This information is
lost after sorting thereby leading to a bad meta-model.

5.2 Performanceon RCV1

The performance on each RCV1 subset and the averaged
result are summarized in Table 4. For this dataset in almost
all the cases the content-based Metalabeler yields the best
performance. The vanilla SVM after cross-validation gives
a reasonably good performance after careful parameter tun-
ing of the SVMs. The threshold based strategies, RC'ut and
SCut deteriorate the performance of SV M, mostly, except
that RCut, and SCut, yield a higher macro-F1 by giv-
ing more predictions than necessary to boost the recall of
each category. Only our meta-model consistently improves
the baseline SV M, in terms of all the three measures. In
contrast to the Yahoo! directory data, SCut strategies do
not work well here. This is due to the presence of rare
classes with only one positive instance in the training data.
Threshold tuning which was done on the training data pos-
sibly overfit the data and becomes quite unreliable for those
classes with few instances. As before, the content-based
MetaLabeler is more robust and demonstrates superior per-
formance over other approaches.

5.3 Robusthess of the M etal abeler

The content-based MetaLabeler works well in both bench-
mark datasets. However, the performance of the score-based
and rank-based MetaLabeler is quite unstable. This could
be due to the effect of unbounded scores in SVM prediction.
Hence, we also experimented with building a meta-model
based on calibrated prediction scores via isotonic regression
as detailed in [32]. Simply stated, isotonic regression maps
the unbounded SVM scores into the [0, 1] range. Figure 3
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Global vs. Local Rcut
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Yahoo! Web Data

- RCut, l:l RCut, - Meta ]

Macro-F1

Yahoo! Web Data

Figure 2: Meta. vs. RCut

shows the micro-F1 of various meta-models on 11 Yahoo!
web datasets. Cals and Cal, represent the performance of
Metas and Meta, after calibration. It can be seen that cal-
ibration resulted in a worse performance for Metas while
improving Meta,. This makes sense as the gap between
the ranked scores is more accurate after calibration. Cal-
ibration in general has been reported to improve the clas-
sification performance, especially the rank-related measure,
over uncalibrated scores [2]. This could also be observed for
our rank-based MetaLabeler. Unfortunately, the calibration
does not help for score-based MetaLabeler. Since the scores
within certain interval are calibrated to the same value, this
might become problematic for those prediction scores close
to the interval boundary. So it is best to use raw content as
meta features because this would cause no loss of informa-
tion. Such a content-based MetaLabeler outperforms all the
other variants of Metal.abeler across almost all the multi-
label datasets.

80

- Meta_ I:l (:alS I:l Meta, - Cal,

751 |
70 b

65 b

Micro-F1(%)
]

‘Yahoo! Web Data

Figure 3: Meta-Models with Calibration

5.4 Biaswith MetalL abeler

On both datasets the average number of labels tends to be
smaller, with relatively a smaller subset of the data having
a class label set of much larger size. This imbalanced distri-
bution in the number of class labels leads to a conservative
prediction bias with the MetaLabeler.

For instance, consider the category Society in Yahoo! web
page data as it contains the largest number of samples. The
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distribution of the number of labels for one trial of the test
data is presented in Table 5, with [ denotes the number
of labels, Truth and Pred denote the number of instances
that have [ labels in the test data and predictions respec-
tively. As can be seen, the majority of the data have only
one label. Though there are some instances which contain
more than 5 labels, this is a “rare class” in the meta-model
learning. The imbalanced distribution in the training data
leads to a meta-model that favors predicting lesser number
of labels. This could be easily verified by the Pred row in
Table 5. The number of instances with only 1 predicted label
is much larger than the true number and for all other cases
the predicted number is less than the truth. This indicates
that our MetaLabeler picks more labels only if the instance
has a strong signal of having more than 1 label. This bias
helps maintain a relatively high precision in the resultant
performance.

Table 5: Distribution of Number of Labels in Society

l 1 2 3 4 5 6 7 8+
Truth | 7638 3180 1098 328 119 27 13 104
Pred | 9819 2195 389 68 19 3 3 11

5.5 Scalability Analysis

It was observed on Yahoo! web page categorization data,
the SCut;, and SCut, methods demonstrate performance
comparable to that of Meta. in terms of micro-F1 and macro-
F1 (shown in Table 3). However, SCut strategy requires
cross-validation to select the optimal thresholds. If cross-
validation is not applicable, SCut could over-fit the training
data as shown in Table 4. MetaLabeler, in contrast, tends
to be more reliable.

Here we use the Yahoo! Society data again as an ex-
ample to examine the scalability of SCut and MetaLabeler.
In particular, we increase the number of training samples
gradually from 1000 to 10000 and record the computation
time on an AMD 4400+ desktop. The computation time for
each method is plotted in Figure 4, where SV M, denotes
the computation time to construct One-vs-Rest SVM and
SCut, and Meta. denote the additional computation time
after the vanilla SVM is built. As SCut; and SCut, share
the same time complexity approximately, we only present
SCut, to make the figure legible.

The computation times of the different methods are lin-
ear with respect to number of samples. However, SCut,
increases much faster than Meta.. In particular, when the
training samples scale to 10000, the additional time needed
to construct MetalLabeler is 148 seconds whereas SCut, is
ten times as much at 1487 seconds. Therefore, our content-
based MetaLabeler outperforms SCut with respect to clas-
sification performance and efficiency, and is more favorable
in large scale multi-label categorization system.

Note that the analysis so far examined the scalability of
SCut and Metal.abeler only in terms of training samples.
In a large scale categorization system, the number of classes
as well as samples could be huge. Recall that MetaLabeler
builds a meta-model from the content to the number of la-
bels. So as long as the maximum number of labels per in-
stance is relatively small, which is typically true in practice,
the training of MetaLabeler should be efficient. SCut, how-
ever, has to sort the prediction scores of all the training
data for each class which operation scales linearly with re-
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Figure 4: Computation Time on Yahoo! Society data

spect to the total number of classes. Also, SCut further
requires cross-validation which only increases the computa-
tional complexity. As we will show in a real-world applica-
tion in the next section, SCut requires days to train while
MetaLabeler finishes in two hours.

6. METALABELERINLARGE SCALE CAT-
EGORIZATION SYSTEM

The content-based MetaLabeler was shown to perform
well on reasonably sized multi-label classification tasks. We
claim the Metal.abeler is an efficient and reliable solution
that should work well even when presented with very large
datasets. In the following subsections we validate this claim
with experiments on a real-world large scale query catego-
rization system.

6.1 Query Categorization

Internet portals and search engines aim to deliver content
and ads to users that are relevant to their interests. In such
applications, it is very useful to categorize the user search
queries into relevant nodes in a taxonomy of user interests.
Such a taxonomy has been constructed by human experts in
Yahoo!, with nodes in the taxonomy spanning a large vari-
ety of topics including for example, finance to home garden
decoration. These nodes are organized in a hierarchy based
on the semantic similarity of the user interests. There are in
total 6,433 interest categories in this taxonomy, distributed
over 8 levels. The nodes at deeper levels correspond to more
specific user interests.

A user query can typically be categorized into multiple
nodes in the taxonomy. For instance, a query “0% interest
credit card no transfer fee” is labeled as belonging to the
following three categories:

Financial Services/Credit, Loans and Debt/Credit/Credit
Cards/Credit Card Balance Transfers

Financial Services/Credit, Loans and Debt/Credit/Credit
Cards/Low-Interest Credit Cards

Financial Services/Credit, Loans and Debt/Credit/Credit
Cards/Low-No-Fee Credit Cards

In this example, labeling the query as Financial Services/
Credit, Loans and Debt/Credit/Credit Card is acceptable;
however, this ignores the extra information in the query
viz., that the user is really interested in a balance trans-
fer card with no interest. In this taxonomy, there are 14
different daughter nodes under the parent node Financial
Services/Credit, Loans and Debt/Credit/Credit Cards and
hence the specific interest of the user can indeed be cap-
tured in this taxonomy.

Our goal is to build machine learned classifiers into this
hierarchical taxonomy such that the queries can be classified
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Figure 5: Label Distribution on Query Data

Table 6: Distributions with respect to depths of the taxon-
omy. #nodes represents the number of categories of that
depth in the taxonomy; #instances denotes the number of
data instances with at least one label at the depth; AveLabel
denotes the average number of labels per query.

Depth | #nodes #instances AveLabel
1 21 70,506 1.0018
2 231 274,298 1.0396
3 1027 498,753 1.0810
4 2021 403,622 1.0926
5 1812 274,767 1.1086
6 1001 114,983 1.0617
7 272 28,776 1.0677
8 48 3,024 1.0754

accurately into relevant classes. For training purposes, we
use a data set of 1.5 million unique queries that have been
manually labeled into nodes in this taxonomy by human
editors. Figure 1 shows the distribution of the number of
labels per query in this dataset. About 20% of the queries
in this dataset have more than 1 label as shown in Figure 5.
The maximum number of labels per query is 26, and the
average number of labels per query is 1.23. Table 6 shows
the number of categories, queries and labels with respect to
depths in the taxonomy. It is observed that most of the
instances reside at levels 2 to 6.

6.2 Metal abeler with Flat M odel

In this subsection, we build a one-vs-rest SVM for the
problem directly without leveraging any hierarchical infor-
mation during training. For evaluation, we split the data
into two parts: roughly 1 million for training and 0.5 mil-
lion for testing. Each query is represented using bag of
words, resulting in total 120,000 features. Here, we com-
pare content-based MetaLabeler with SCut only as it is the
winning thresholding strategy on the benchmark data. We
used a linear SVM based One-vs-Rest approach for the con-
struction of the meta-model. We emphasize the fact that
both operations of obtaining ranking scores and meta-label
prediction are classifier agnostic. We use linear SVMs as
our underlying model because of its ability to handle large
quantities of training data and ease of deployment in on-
line, real-world systems. Evaluation of recently developed
multi-class SVMs [13] in our problem is an ongoing process.

The vanilla SVM training alone takes 12 hours to finish.
Note that one query can have at most 26 labels and so the
MetaLabeler requires no more than 26 extra binary SVMs,
which adds an additional 2 hours. Due to the large size of
the data, SCut training involves many 1/O operations. For
instance, the size of the prediction score file for the training
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Table 7: Performance of MetaLabeler on Flat Model

Micro-F1 Macro-F1
Depth | Flat Meta SCut | Flat Meta SCut
1 90.03 91.31 64.44 | 87.38 89.09 58.69
2 87.38 89.15 62.01 | 75.79 79.69 38.06
3 83.28 86.23 58.17 | 64.72 69.13 22.59
4 80.03 83.53 48.48 | 60.35 64.79 15.26
5 77.57 81.71 42.22 | 58.78 64.17 13.84
6 77.00 81.35 40.06 | 56.72 61.31  9.81
7 76.31 82.63 34.09 | 56.67 65.59 13.18
8 73.03 78.41 25.69 | 49.10 54.87 7.71

data in all the categories is 47GB large and takes 3 hours
to output. After spinning the machine for approximately 27
hours, we finally obtain the threshold tuned on the training
data. Keep in mind that in cross validation, we have to train
vanilla SVM and then conduct the SCut tuning in each trial,
which is way too expensive.

Table 7 shows the performance at each depth in the tax-
onomy. To calculate the performance, a query belonging to
a category node is considered associated with all the ances-
tor nodes as well. In the table, “Flat” denotes the vanilla
One-vs-Rest SVM, “Meta” denotes the content-based Met-
aLabeler. “SCut” is tuned according to the corresponding
measure. The entries in bold denotes the best model.

Evidently, with MetaL.abeler, we are able to improve the
flat model in terms of both micro-F1 and macro-F1 across all
levels in the taxonomy. SCut, despite the expensive compu-
tational cost, has very low recall. The threshold have been
over-estimated as many queries are predicted with no labels.
This could be due to the inter-dependency of the classes and
extremely small number of samples in some nodes for train-
ing. In contrast, our proposed MetalLabeler is quite reliable
and efficient.

6.3 MetalL abeer with Hierarchical Model

The query dataset has meta-information about the classes,
in the form of a class hierarchy. Leveraging such hierarchi-
cal information has been shown to yield better performance
than classifiers that ignore such information [4, 14, 16]. In
the following sub-sections, we investigate the effectiveness of
the MetaLabeler in a hierarchical model. SCut, due to its
expensive training time without guaranteeing better perfor-
mance, is skipped in this setting.

6.3.1 Hierarchical Classification Model

In order to better leverage the class hierarchy information,
we build a hierarchical classifier as follows:

e An One-vs-Rest SVM is built at each node based on
the training data at the subtree of that node.

e For prediction, the set of classifiers is traversed in a
top-down fashion. Starting from the root node, a data
instance is first classified into the set of the level 1
nodes. The winning node in level 1 then decides the
set of nodes that are to be explored at level 2. The data
is pushed down the tree until a leaf node is reached.

e To account for the data instances that belong to an
internal node, we construct an artificial “parent” leaf-
node under the internal node. If a query is classified
into such “parent” leaf-node, the prediction output is
then the corresponding parent node.
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Figure 6: MetaLabeler vs. Hierarchical Model

The proposed MetaLabeler could be easily embedded into
the training and prediction phase of a hierarchical classifier.
A content-based MetaLabeler was built at each node in the
taxonomy. During prediction, we explore multiple paths,
depending on the prediction of the Metal.abeler, using either
depth-first or breadth-first search. The final output of the
hierarchical model is a set of labels for each query.

6.3.2 Hierarchical Multi-Label Prediction

The micro-averaged precision and recall of MetaLabeler
versus the original hierarchical model is presented in Fig-
ure 6. The precision, as shown in the figure, actually de-
creases by 1 — 2%. In contrast, the improvement of recall
is drastic. The recall at deeper levels increases from 70% to
over 80%. We also show the improvement in terms of micro-
F1 and macro-F1 in Table 8. With MetaLabeler, both mea-
sures improve by 1 — 9% at different levels. Even though we
take a top-down multi-path exploration method for predic-
tion, our model typically predicts a limited number of labels
due to the predictive bias of MetaLabeler. This effectively
avoids the explosion of number of labels for hierarchical pre-
diction as indicated by the high precision (> 90%).

A closer look at the performance of the hierarchical model
in Table 8 versus the flat model performance in Table 7
reveals that hierarchical model consistently yields a higher
micro-F1 and macro-F1 at deeper levels. The best perfor-
mance is achieved when MetalLabeler is utilized together
with the hierarchical information of classes.

The content-based Metal.abeler works pretty well in our
query categorization problem as well as the benchmark data.
In order to get some intuition into this behavior, we checked
the features with the highest weight in the meta-model at
the root node of the hierarchical model. Words such as over-
stock.com, blizzard, threading, etc., rank among the top fea-
tures. The word blizzard, for instance, is associated with la-
bels like Video Game, Computer Game Software, Fast Food
Restaurant, and Weather Information. The content-based
MetaLabeler is able to extract such generic features that are
typically associated with multiple labels and weight them
appropriately.

7. CONCLUSIONS & FUTURE WORK

Multi-label classification appears in various web-related
tasks such as web page categorization, query-categorization,
and user profiling. Typically, the categories are organized
into a hierarchy. Unfortunately, classifying data into the set
of relevant nodes in the taxonomy is not an easy task.
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Table 8: MetaLabeler on Hierarchical Model.

Micro-F1 Macro-F1
Depth | Hier Meta | Hier Meta
1 90.03 91.25 | 87.29 88.84
2 87.62 89.42 | 7491 T78.86
3 83.77 87.39 | 65.40 70.57
4 80.77 85.36 | 63.96 70.62
5 79.01 84.59 | 65.06 72.91
6 79.42 84.32 | 67.83 73.68
7 79.21 86.05 | 67.22 76.65
8 82.66 86.78 | 63.75 70.40

In this work, we propose MetaLabeler to determine the
number of relevant labels automatically. Three versions of
MetaLabeler are presented: content-based, score-based and
rank-based. Based on extensive experiments on benchmark
data and our large scale query categorization problem, we
conclude that the content-based MetaLabeler in conjunc-
tion with a classifier that ranks class memberships tends to
outperform other multi-label prediction systems. The pro-
posed solution scales to millions of samples and can easily
be incorporated into hierarchical classification systems. The
MetalLabeler requires neither expensive cross-validation nor
human interaction. The simplicity of training and scoring
coupled with its performance make the MetalLabeler a vi-
able solution for the construction of large scale multi-label
classification system.

One limitation of MetaLabeler is that it lacks the flexi-
bility to be tuned for user-specified precision/recall levels.
A possible solution that could address this problem is to
construct a meta-model that takes into account the label
confidence in the training data. We are also planning to
apply MetalLabeler to social bookmarking system with large
number of labels.
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