
On Multiple Kernel Learning with Multiple Labels

Lei Tang
Department of CSE

Arizona State University
L.Tang@asu.edu

Jianhui Chen
Department of CSE

Arizona State University
Jianhui.Chen@asu.edu

Jieping Ye
Department of CSE

Arizona State University
Jieping.Ye@asu.edu

Abstract

For classification with multiple labels, a common
approach is to learn a classifier for each label. With
a kernel-based classifier, there are two options to
set up kernels: select a specific kernel for each label
or the same kernel for all labels. In this work, we
present a unified framework for multi-label mul-
tiple kernel learning, in which the above two ap-
proaches can be considered as two extreme cases.
Moreover, our framework allows the kernels shared
partially among multiple labels, enabling flexible
degrees of label commonality. We systematically
study how the sharing of kernels among multiple
labels affects the performance based on extensive
experiments on various benchmark data including
images and microarray data. Interesting findings
concerning efficacy and efficiency are reported.

1 Introduction
With the proliferation of kernel-based methods like support
vector machines (SVM), kernel learning has been attracting
increasing attentions. As widely known, the kernel func-
tion or matrix plays an essential role in kernel methods. For
practical learning problems, different kernels are usually pre-
specified to characterize the data. For instance, Gaussian ker-
nel with different width parameters; data fusion with het-
erogeneous representations[Lanckriet et al., 2004b]. Tra-
ditionally, an appropriate kernel can be estimated through
cross-validation. Recent multiple kernel learning (MKL)
methods[Lanckrietet al., 2004a] manipulate the Gram (ker-
nel) matrix directly by formulating it as a semi-definite pro-
gram (SDP), or alternatively, search for an optimal convex
combination of multiple user-specified kernels via quadrati-
cally constrained quadratic program (QCQP). Both SDP and
QCQP formulations can only handle data of medium size
and small number of kernels. To address large scale kernel
learning, various methods are developed, including SMO-
like algorithm[Bach et al., 2004], semi-infinite linear pro-
gram (SILP)[Sonnenburget al., 2007] and projected gradient
method[Rakotomamonjyet al., 2007]. It is noticed that most
existing works on MKL focus on binary classifications. In
this work, MKL (learning the weights for each base kernel)
for classification with multiple labels is explored instead.

Classification with multiple labels refers to classification
with more than 2 categories in the output space. Commonly,
the problem is decomposed into multiple binary classifica-
tion tasks, and the tasks are learned independently or jointly.
Some works attempt to address the kernel learning problem
with multiple labels. In[Jebara, 2004], all binary classifi-
cation tasks share the same Bernoulli prior for each kernel,
leading to a sparse kernel combination.[Zien, 2007] dis-
cusses the problem of kernel learning for multi-class SVM,
and [Ji et al., 2008] studies the case for multi-label classi-
fication. Both works above exploit the same kernel directly
for all classes, yetno empirical result is formally reported
concerning whether the same kernel across labels performs
better over a specific kernel for each label.

The same-kernel-across-tasks setup seems reasonable at
first glimpse but needs more investigation. Mostly, the mul-
tiple labels are within the same domain, and naturally the
classification tasks share some commonality. One the other
hand, the kernel is more informative for classification when
it is aligned with the target label. Some tasks (say recognize
sunsetandanimal in images) are quite distinct, so a specific
kernel for each label should be encouraged. Given these con-
siderations, two questions rises naturally:

• Which approach could be better, the same kernel for all
labels or a specific kernel for each label? To our best
knowledge, no work has formally studied this issue yet.

• A natural extension is to develop kernels that capture the
similarity and difference among labels simultaneously.
This matches the relationship among labels more rea-
sonably, but could it be effective in practice?

The questions above motivate us to develop a novel frame-
work to model tasksimilarity anddifferencesimultaneously
when handling multiple related classification tasks. We show
that the framework can be solved via QCQP with proper reg-
ularization on kernel difference. To be scalable, an SILP-
like algorithm is provided. In this framework, selecting the
same kernel for all labels or a specific kernel for each label
are deemed as two extreme cases. Moreover, this framework
allows various degree of kernel sharing with proper param-
eter setup, enabling us to study different strategies of kernel
sharing systematically. Based on extensive experiments on
benchmark data, we report some interesting findings and ex-
planations concerning the aforementioned two questions.



2 A Unified Framework
To systematically study the effect of kernel sharing among
multiple labels, we present a unified framework to allow flex-
ible degree of kernel sharing. We focus on the well-known
kernel-based algorithm SVM, for learningk binary classifica-
tion tasks{f t}k

t=1 respectively, based onn training samples
{(xi, y

t
i)}

n
i=1, wheret is the index of a specific label. Let

Ht
K be the feature space, andφt

K be the mapping function
defined asφt

K : φt
K(x) → Ht

K , for a kernel functionKt.
Let Gt be the kernel (Gram) matrix for thet-th task, namely
Gt

ij = Kt(xi, xj) = 〈φt
K(xi) · φt

K(xj)〉. Under the setting
of learning multiple labels{f t}k

t=1 using SVM, each labelf t

can be seen as learning a linear function in the feature space
Ht

K , such thatf t(x) = sign(〈wt, φt
K(x)〉 + bt) wherewt is

the feature weight andbt is the bias term.
Typically, the dual formulation of SVM is considered. Let

D(αt,Gt) denote the dual objective of thet-th task given ker-
nel matrixGt:

D(αt,Gt) = [αt]Te −
1

2
[αt]T

(

Gt ◦ y
t[yt]T

)

αt (1)

where for the taskf t, Gt ∈ Sn
+ denotes the kernel matrix

and Sn
+ is the set of semi-positive definite matrices;◦ de-

notes element-wise matrix multiplication;αt ∈ R
n denotes

the dual variable vector. Mathematically, multi-label learning
with k labels can be formulated in the dual form as:

max
{αt}k

t=1

k
∑

t=1

D(αt,Gt) (2)

s.t. [αt]Ty
t = 0, 0 ≤ αt ≤ C, t = 1, · · · , k

Here,C is the penalty parameter for allowing the misclassi-
fication. Given{Gt}k

t=1, optimal{αt}k
t=1 in Eq. (2) can be

found by solving a convex problem.
Note that the dual objective is the same as the primal objec-

tive of SVM due to its convexity (equal to the empirical clas-
sification loss plus model complexity). Following[Lanckriet
et al., 2004a], multiple kernel learning withk labels andp
base kernelsG1, G2, · · · , Gp can be formulated as:

min
{Gt}k

t=1

λ · Ω({Gt}k
t=1) + max

{αt}k
t=1

k
∑

t=1

D(αt,Gt) (3)

s.t. [αt]Ty
t = 0, 0 ≤ αt ≤ C, t = 1, · · · , k

Gt =

p
∑

i=1

θt
iGi, t = 1, · · · , k (4)

p
∑

i=1

θt
i = 1, θt ≥ 0, t = 1, · · · , k (5)

whereΩ({Gt}k
t=1) is a regularization term to represent the

cost associated with kernel differences among labels. To cap-
ture the commonality among labels,Ω should be amonotonic
increasing function of kernel difference.λ is the trade-off
parameter between kernel difference and classification loss.

Clearly, if λ is set to 0, the objective goal is decoupled
into k sub-problems, with each selecting a kernel indepen-
dently (Independent Model); Whenλ is sufficiently large, the

regularization term dominates and forces all labels to select
the same kernel (Same Model). In between, there are infinite
number of Partial Model which control the degrees of kernel
difference among tasks. The largerλ is, the more similar the
kernels of each label are.

3 Regularization on Kernel Difference
Here, we develop one regularization scheme such that for-
mula (3) can be solved via convex programming. Since the
optimal kernel for each label is expressed as a convex combi-
nation of multiple base kernels as in eq. (4) and (5), eachθt

essentially represents the kernel associated with thet-th la-
bel. We decouple the kernel weights of each label into two
non-negative parts:

θt
i = ζi + γt

i , ζi, γ
t
i ≥ 0 (6)

whereζi denotes the shared kernel across labels, andγt
i is the

label-specific part. So the kernel difference can be defined as:

Ω
(

{Gt}k
t=1

)

=
1

2

k
∑

t=1

p
∑

i=1

γt
i (7)

For presentation convenience, we denote

Gt
i(α) = [αt]T

(

Gt
i ◦ y

t[y]T
)

αt (8)

It follows that the MKL problem can be solved via QCQP1.
Theorem 3.1. Given regularization as presented in(6) and
(7), the problem in(3) is equivalent to a Quadratically Con-
strained Quadratic Program (QCQP):

max

k
∑

t=1

[αt]T e −
1

2
s

s.t. s ≥ s0, s ≥

k
∑

t=1

st − kλ

s0 ≥

k
∑

t=1

Gt
i(α), i = 1, · · · , p

st ≥ Gt
i(α), i = 1, · · · , p, t = 1, · · · , k

[αt]Ty
t = 0, 0 ≤ αt ≤ C, t = 1, · · · , k

The kernel weights of each label (ζi, γ
t
i ) can be obtained via

the dual variables of the constraints.
The QCQP formulation involvesnk+2 variables,(k+1)p

quadratic constraints andO(nk) linear constraints. Though
this QCQP can be solved efficiently by general optimization
software, the quadratic constraints might exhaust memory re-
sources ifk or p is large. Next, we’ll show a more scalable
algorithm that solves the problem efficiently.

4 Algorithm
The objective in (3) givenλ is equivalent to the following
problem with a properβ and other constraints specified in (3):

min
{Gt}

max
{αt}

k
∑

t=1

{

[αt]T e−
1

2
[αt]T

(

Gt ◦ y
t[yt]T

)

αt

}

(9)

s.t. Ω({Gt}k
t=1) ≤ β (10)

1Please refer to the appendix for the proof.



Compared withλ, β has an explicit meaning: the maximum
difference among kernels of each label. Since

∑p
i=1 θt

i =
1, the min-max problem in (9), akin to[Sonnenburget al.,
2007], can be expressed as:

min

k
∑

t=1

gt (11)

s.t.
p
∑

i=1

θt
iD(αt, Gi) ≤ gt, ∀αt ∈ S(t) (12)

with S(t) =
{

αt|0 ≤ αt ≤ C, [αt]Ty
t = 0

}

(13)

Note that the max operation with respect toαt is transformed
into a constraint for all the possibleαt in the setS(t) defined
in (13). An algorithm similar to cutting-plane could be uti-
lized to solve the problem, which essentially adds constraints
in terms ofαt iteratively. In theJ-th iteration, we perform
the following:

1). Givenθt
i andgt from previous iteration, find out new

αt
J in the set (13) which violates the constraints (12) most

for each label. Essentially, we need to find outαt such that
∑p

i=1 θt
iD(αt, Gi) is maximized, which boils down to an

SVM problem with fixed kernel for each label:

max
αt

[αt]Te−
1

2
[αt]T

(

p
∑

i=1

θt
iG

t
i ◦ y

t[yt]T

)

αt

Here, each label’s SVM problem can be solved independently
and typical SVM acceleration techniques and existing SVM
implementations can be used directly.

2). Givenαt
J obtained in Step 1, addk linear constraints:

θt
iD(αt

J , Gi) ≤ gt, t = 1, · · · , k

and find out newθt andgt via the problem below:

min

k
∑

t=1

gt

s.t.
p
∑

i=1

θt
iD(αt

j , Gi) ≤ gt, j = 1, · · · , J

θt ≥ 0,

p
∑

i=1

θt
i = 1, t = 1, · · · , k

1

2

k
∑

t=1

p
∑

i=1

γt
i ≤ β, θt

i = ζi + γt
i , ζi, γ

t
i ≥ 0

Note that both the constraints and the objective are linear,so
the problem can be solved efficiently by general optimization
package.

3). J = J + 1. Repeat the above procedure until noα is
found to violate the constraints in Step 1.

So in each iteration, we interchangeably solvek SVM
problems and a linear program of sizeO(kp).

5 Experimental Study
5.1 Experiment Setup
4 multi-label data sets are selected as in Table 1. We also
include 5 multi-class data sets as they are special cases of

Table 1: Data Description
Data #samples #labels #kernels

Ligand 742 36 15
Multi-label Bio 3588 13 8

Scene 2407 6 15
Yeast 2417 14 15
USPS 1000 10 10
Letter 1300 26 10

Multi-class Yaleface 1000 10 10
20news 2000 20 62
Segment 2310 7 15

multi-label classification and one-vs-all approach performs
reasonably well[Rifkin and Klautau, 2004]. We report av-
erage AUC and accuracy for multi-label and multi-class data,
respectively. A portion of data are sampled fromUSPS, Let-
ter andYaleface, as they are too large to handle directly. Var-
ious type of base kernels are generated. We generate 15 dif-
fusion kernels with parameter varying from 0.1 to 6 forLig-
and[Tsuda and Noble, 2004]; The 8 kernels ofBio are gener-
ated following [Lanckrietet al., 2004b]; 20newsuses diverse
text representations[Kolda, 1997] leading to 62 different ker-
nels; For other data, Gaussian kernels with different widths
are constructed. The trade-off parameterC of SVM is set to
a sensible value based on cross validation. We vary the num-
ber of samples for training and randomly sample 30 different
subsets in each setup. The average performance are recorded.

5.2 Experiment Results
Due to space limit, we can only report some representative
results in Table 3-5. The details are presented in an extended
technical report[Tanget al., 2009]. Tr Ratio in the first row
denotes the training ratio, the percentage of samples used
for training. The first column denotes the portion of kernels
shared among labels via varying the parameterβ in (10), with
Independent and Same model being the extreme. The last row
(Diff ) represents the performance difference between the best
model and the worst one. Bold face denotes the best in each
column unless there is no significant difference. Below, we
seek to address the problems raised in the introduction.

Does kernel regularization yield any effect?
The maximal difference of various models on all data sets
are plotted in Figure 1. The x-axis denotes increasing train-
ing data and y-axis denotes maximal performance difference.
Clearly, when the training ratio is small, there’s a difference
between various models, especially forUSPS, Yalefaceand
Ligand. For instance, the difference could be as large as9%
when only2% USPSdata is used for training. This kind
of classification with rare samples are common for applica-
tions like object recognition. DataBio andLetterdemonstrate
medium difference (between1− 2%). But for other data sets
like Yeast, the difference (< 1%) is negligible.

The difference diminishes as training data increases. This
is common for all data sets. When training samples are mod-
erately large, kernel regularization actually has no much ef-
fect. It works only when the training samples are few.

Which model excels?
Here, we study which model (Independent, Partial or Same)
excels if there’s a difference. In Table 3-5, the entries in bold



Figure 1: Performance Difference

Independent 20% 40% 60% 80% Same
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

A
U

C

Figure 2: Performance onLigand

10% 20% 30% 40% 50% 70%
0

20

40

60

80

100

120

140

160

180

200

Trainig Ratio

C
om

pu
ta

tio
n 

T
im

e

 

 

Independent

Partial

Same

Figure 3: Efficiency Comparison

denote the best one in each setting. It is noticed that Same
Model tends to be the winner or a close runner-up most of
the time. This trend is observed for almost all the data. Fig-
ure 2 shows the average performance and standard deviation
of different models when10% of Ligand data are used for
training. Clearly, a general trend is that sharing the same ker-
nel is likely to be more robust compared with Independent
Model. Note that the variance is large because of the small
sample for training. Actually, Same Model performs best or
close in 25 out of 30 trials.

So it is a wiser choice to share the same kernel even if
binary classification tasks are quite different. Independent
Model is more likely to overfit the data. Partial model, on
the other hand, takes the winner only if it is close to the same
model (sharing90% kernel as in Table 4). Mostly, its perfor-
mance stays between Independent and Same Model.

Why is Same Model better?
As have demonstrated, Same Model outperforms Partial and
Independent Model. In Table 2, we show the average kernel
weights of 30 runs when2% of USPS data is employed for
training. Each column stands for a kernel. The weights for
kernel 8-10 are not presented as they are all0. The first 2
blocks represents the kernel weights of each class obtained
via Independent and Partial Model sharing50% kernel, re-
spectively. The row follows are the weights produced by
Same Model. All the models, no matter which class, prefer
to chooseK5 andK6. However, Same Model assigns a very
large weight to the6-th kernel. In the last row, we also present
the weight obtained when60% of data is used for training,
in which case Independent Model and Same Model tend to
select almost the same kernels. Compared with others, the
weights of Same Model obtained using2% data is closer to
the solution obtained with60% data. In other words, forcing
all the binary classification tasks to share the same kernel is
tantamount to increasing data samples for training, resulting
in a more robust kernel.

Which model is more scalable?
Regularization on kernel difference seems to affect
marginally when the samples are more than few. Thus,
a method requiring less computational cost is favorable.

Our algorithm consists of multiple iterations. In each it-
eration, we need to solvek SVMs given fixed kernels. For
each binary classification problem, combining the kernel ma-
trix costsO(pn2). The time complexity of SVM isO(nη)
with η ∈ [1, 2.3] [Platt, 1999]. After that, a LP with

Table 2: Kernel Weights of Different Models
K1 K2 K3 K4 K5 K6 K7

C1 0 0 0 0 .25 .43 .32
C2 .04 .01 0 0 .03 .92 0
C3 0 0 0 0 .11 .59 .30
C4 0 0 0 0 .34 .53 .12

I C5 0 0 0 .10 .42 .42 .06
C6 0 0 0 .02 .41 .46 .10
C7 0 .03 0 0 .39 .49 .09
C8 .00 0 .03 .20 .16 .54 .06
C9 0 0 0 .14 .39 .39 .08
C10 .10 .02 .02 .24 .15 .47 .00
C1 .02 .01 0 0 .19 .60 .19
C2 .03 .01 0 0 .05 .91 0
C3 .02 .01 0 0 .09 .70 .18
C4 .02 .01 0 0 .22 .67 .09

P C5 .02 .01 0 .07 .23 .65 .03
C6 .02 .01 0 .03 .23 .67 .05
C7 .02 .02 0 .04 .19 .67 .05
C8 .02 .01 .03 .08 .12 .68 .06
C9 .02 .01 0 .08 .22 .63 .05
C10 .08 .02 0 .14 .11 .65 .00

S – .03 .01 0 0 .07 .88 .01
Tr=60% – 0 0 0 0 .07 .93 0

O(pk) variables (the kernel weights) and increasing number
of constraints needs to be solved. We notice that the algo-
rithms terminates with dozens of iterations and SVM com-
putation dominates the computation time in each iteration if
p << n. Hence, the total time complexity is approximately
O(Ikpn2) + O(Iknη) whereI is the number of iterations.

As for Same Model, the same kernel is used for all the
binary classification problems and thus requires less time for
kernel combination. Moreover, compared with Partial Model,
only O(p), instead ofO(pk) variables (kernel weights), need
to be determined, resulting less time to solve the LP. With In-
dependent Model, the total time for SVM training and kernel
combination remains almost the same as Partial. Rather than
one LP withO(pk) variables, Independent needs to solvek
LP with onlyO(p) variables in each iteration, potentially sav-
ing some computation time. One advantage of Independent
Model is that, it decomposes the problem into multiple in-
dependent kernel selection problem, which can be paralleled
seamlessly with a multi-core CPU or clusters.

In Figure 3, we plot the average computation time of vari-
ous models onLiganddata on a PC with Intel P4 2.8G CPU
and 1.5G memory. We only plot Partial model sharing50%
kernel to make the figure legible. All the models yield simi-



Table 3: Ligand Result
Tr Ratio 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%

Independent 69.17 77.30 79.22 81.01 80.92 82.73 82.85 83.95 83.83 85.42 86.67 85.76
20% 71.23 77.43 79.33 81.07 81.01 82.80 82.92 84.03 83.90 85.47 86.70 85.80
40% 71.52 77.88 80.34 81.17 81.55 82.90 83.01 84.18 84.01 85.53 86.80 85.92
60% 72.99 79.71 81.39 82.09 82.28 83.30 83.69 84.49 84.29 85.71 86.94 86.12
80% 74.44 80.65 81.75 82.83 82.86 83.66 84.35 84.78 84.45 85.88 86.99 86.30

Same 73.66 80.65 81.95 82.90 82.90 83.64 84.34 84.79 84.52 85.83 86.98 86.29
Diff 5.54 3.44 2.73 1.93 1.97 0.93 1.52 0.84 0.69 0.46 0.33 0.54

Table 4: Bio Result
Tr Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30%

Independent 60.13 63.84 66.31 67.51 69.18 71.42 72.24 73.18 73.69 74.95 79.81 81.95
20% 60.24 64.38 66.90 68.57 70.19 72.33 73.09 73.87 74.23 75.50 80.08 82.15
40% 60.37 64.86 67.30 69.10 70.67 72.86 73.59 74.35 74.66 75.88 80.33 82.40
60% 60.71 65.21 67.77 69.47 71.06 73.27 73.95 74.73 75.02 76.21 80.56 82.61
80% 60.92 65.40 67.96 69.68 71.38 73.52 74.22 75.03 75.27 76.42 80.72 82.76
90% 60.99 65.45 67.94 69.72 71.41 73.57 74.25 75.10 75.34 76.46 80.73 82.78

Same 59.98 65.21 67.51 69.52 71.37 73.43 74.13 75.0475.34 76.44 80.70 82.73
Diff 1.01 1.61 1.65 2.21 2.23 2.15 2.01 1.92 1.65 1.51 0.92 0.83

Table 5: USPS Result
Tr Ratio 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 40% 60%

Independent 49.09 60.54 64.57 69.28 72.44 75.08 77.24 78.84 80.69 86.35 90.12 91.96
20% 51.50 61.39 65.14 70.19 72.96 75.44 77.53 79.10 80.90 86.47 90.18 92.04
40% 53.27 62.48 65.86 71.19 73.63 75.84 77.82 79.47 81.06 86.49 90.20 92.20
60% 54.64 63.71 67.22 72.01 74.33 76.29 78.27 79.85 81.24 86.51 90.23 92.20
80% 56.39 65.18 68.47 72.61 74.93 76.70 78.63 80.06 81.45 86.50 90.22 92.29

Same 58.40 66.63 70.05 73.29 75.49 77.07 79.08 80.31 81.5686.46 90.21 92.28
Diff(%) 9.31 6.09 5.48 4.01 3.05 1.99 1.84 1.47 0.87 0.16 0.11 0.33

lar magnitude with respect to number of samples, as we have
analyzed. But Same Model takes less time to arrive at a solu-
tion. Similar trend is observed for other data sets as well.

Same Model, with more strict constraints, is indeed more
efficient than Independent and Partial model if parallel com-
putation is not considered. So in terms of both classification
performance and efficiency, Same model should be preferred.
Partial Model, seemingly more reasonable to match the re-
lationship between labels, should not be considered given
its marginal improvement and additional computational cost.
This conclusion, as we believe, would be helpful and sugges-
tive for other practitioners.

A special case: Average Kernel
Here we examine one special case of Same Model: average
of base kernels. The first block of Table 6 shows the per-
formance of MKL with Same Model compared with average
kernel on Ligand over 30 runs. Clearly, Same Model is al-
most always the winner. It should be emphasized that simple
average actually performs reasonably well, especially when
base kernels are good. The effect is mostly observable when
samples are few (say only10% training data). Interestingly,
as training samples increases to 60%-80%, the performance
with Average Kernel decreases. However, Same Model’s per-
formance improves consistently. This is because Same Model
can learn an optimal kernel while Average does not consider
the increasing label information for kernel combination.

A key difference between Same Model and Average Kernel
is that the solution of the former is sparse. For instance, Same
Model on Ligand data picks 2-3 base kernels for the final so-
lution while Average has to consider all the 15 base kernels.

For data like microarray, graphs, and structures, some spe-
cialized kernels are computationally expensive. This is even
worse if we have hundreds of base kernels. Thus, it is desir-
able to select those relevant kernels for prediction. Another
potential disadvantage with Average Kernel is robustness.To
verify this, we add an additional linear kernel with random
noise. The corresponding performance is presented in the 2nd
block of Table 6. The performance of Average Kernel deterio-
rates whereas Same Model’s performance remains nearly un-
changed. This implies that Average Kernel can be affected by
noisy base kernels whereas Same Model is capable of picking
the right ones.

6 Conclusions

Kernel learning for multi-label or multi-class classification
problem is important in terms of kernel parameter tuning or
heterogeneous data fusion, whereas it is not clear whether
a specific kernel or the same kernel should be employed
in practice. In this work, we systematically study the ef-
fects of different kernel sharing strategies. We present a uni-
fied framework with kernel regularization such that flexible
degree of kernel sharing is viable. Under this framework,
three different models are compared: Independent, Partial
and Same Model. It turns out that the same kernel is preferred
for classification even if the labels are quite different.

When samples are few, Same Model tends to yield a more
robust kernel. Independent Model, on the contrary, is likely
to learn a ‘bad’ kernel due to over-fitting. Partial Model, oc-
casionally better, lies in between most of the time. However,
the difference of these models vanishes quickly with increas-



Table 6: Same Model compared with Average Kernel on Ligand Data. The 1st block is the performance when all the kernels
are reasonably good; The 2nd block is the performance when a noisy kernel is included in the base kernel set.

Tr ratio 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%
Good Same 73.66 80.65 81.95 82.90 82.90 83.64 84.34 84.79 84.52 85.83 86.98 86.29

Kernels Average 77.12 79.67 80.69 81.72 82.01 82.42 82.52 82.19 81.83 80.76 78.44 76.17
Noisy Same 73.69 80.64 81.92 82.92 82.92 83.63 84.36 84.72 84.53 85.84 86.94 86.32

Kernels Average 73.32 78.41 79.08 79.81 78.98 80.29 79.72 79.81 79.12 77.80 76.11 71.67

ing training samples. All the models yield similar classifica-
tion performance when samples are large. In this case, Inde-
pendent and Same are more efficient. Same Model, a little
bit surprising, is the most efficient method. Partial Model,
though, asymptotically bears the same time complexity, often
needs more computation time.

It is observed that for some data, simply using the aver-
age kernel (which is a special case of Same Model) with a
proper parameter tuning for SVM occasionally gives reason-
able good performance. This also confirms our conclusion
that selecting the same kernel for all labels is more robust in
reality. However, this average kernel is not sparse and can
be sensitive to noisy kernels. In this work, we only consider
kernels in the input space. It could be interesting to explore
the construction of kernels in the output space as well.

Acknowledgments
This work was supported by NSF IIS-0612069, IIS-0812551,
CCF-0811790, NIH R01-HG002516, and NGA HM1582-08-
1-0016. We thank Dr. Rong Jin for helpful suggestions.

A Proof for Theorem 3.1
Proof. Based on Eq. (4), (5) and (6), we can assume

p
∑

i=1

ζi = c1,

p
∑

i=1

γ
t
i = c2, c1 + c2 = 1, c1, c2 ≥ 0.

LetGt(α) = [αt]T
(

Gt ◦ y
t[y]T

)

αt andGt
i(α) as in Eq. (8).

Then Eq. (3) can be reformulated as:

max
αt

min
{Gt}

k
∑

t=1

[αt]T e−
1

2

k
∑

t=1

{

−λc2 + G
t(α)

}

= max
αt

k
∑

t=1

[αt]T e−
1

2
max
ζi,γt

i

k
∑

t=1

{

−λc2 +

p
∑

i=1

(ζi + γ
t
i )G

t
i(α)

}

It follows that the 2nd term can be further reformulated as

max
c1,c2,ζi,γt

i

k
∑

t=1

{

∑

i

ζiG
t
i(α) +

p
∑

i=1

γ
t
i G

t
i(α) − λc2

}

= max
c1,c2

{

max
∑

i ζi=c1

p
∑

i=1

ζi

k
∑

t=1

G
t
i(α)

+
k
∑

t=1

max
∑

i γt
i
=c2

p
∑

i=1

γ
t
i G

t
i(α) − kλc2

}

= max
c1,c2

{

c1 max
i

k
∑

t=1

G
t
i(α) +

k
∑

t=1

c2 max
i

G
t
i(α) − kλc2

}

= max
c1+c2=1

{

c1 max
i

k
∑

t=1

G
t
i(α) + c2

[

k
∑

t=1

max
i

G
t
i(α) − kλ

]}

= max

{

max
i

k
∑

t=1

G
t
i(α),

[

k
∑

t=1

max
i

G
t
i(α) − kλ

]}

By adding constraints as

s ≥ s0, s ≥

k
∑

t=1

st − kλ

s0 ≥

k
∑

t=1

G
t
i(α), i = 1, · · · , p

st ≥ G
t
i(α), i = 1, · · · , p, t = 1, · · · , k

We thus prove the Theorem.

References
[Bachet al., 2004] Francis R. Bach, Gert R. G. Lanckriet,

and Michael I. Jordan. Multiple kernel learning, conic du-
ality, and the smo algorithm. InICML, 2004.

[Jebara, 2004] Tony Jebara. Multi-task feature and kernel se-
lection for svms. InICML, 2004.

[Ji et al., 2008] S. Ji, L. Sun, R. Jin, and J. Ye. Multi-label
multiple kernel learning. InNIPS, 2008.

[Kolda, 1997] Tamara G. Kolda. Limited-memory matrix
methods with applications. PhD thesis, 1997.

[Lanckrietet al., 2004a] Gert R. G. Lanckriet, Nello Cris-
tianini, Peter L. Bartlett, Laurent El Ghaoui, and Michael I.
Jordan. Learning the kernel matrix with semidefinite pro-
gramming.JMLR, 5, 2004.

[Lanckrietet al., 2004b] Gert R. G. Lanckriet, et al. Kernel-
based data fusion and its application to protein function
prediction in yeast. InPSB, 2004.

[Platt, 1999] John C. Platt. Fast training of support vector
machines using sequential minimal optimization. 1999.

[Rakotomamonjyet al., 2007] Alain Rakotomamonjy, Fran-
cis R. Bach, Stephane Canu, and Yves Grandvalet. More
efficiency in kernel learning. InICML, 2007.

[Rifkin and Klautau, 2004] Ryan Rifkin and Aldebaro Klau-
tau. In defense of one-vs-all classification.JMLR, 5, 2004.

[Sonnenburget al., 2007] Sren Sonnenburg, Gunnar Rtsch,
Christin Schfer, and Bernhard Schlkopf. Large scale mul-
tiple kernel learning.JMLR, 7:1531–1565, 2007.

[Tanget al., 2009] Lei Tang, Jianhui Chen, and Jieping Ye.
On multiple kernel learning with multiple labels. Techni-
cal report, Arizona State University, 2009.

[Tsuda and Noble, 2004] Koji Tsuda and William Stafford
Noble. Learning kernels from biological networks by max-
imizing entropy.Bioinformatics, 20:326–333, 2004.

[Zien, 2007] Alexander Zien. Multiclass multiple kernel
learning. InICML, 2007.


