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Semi-supervised Clustering

1 Constrained-based method

Seeded KMeans, Constrained KMeans given partial label information.
COP KMeans given pairwise constraint(must-link, cannot-link)

2 Metric-based method

Learn a metric to satisfy the constraint, such that the data of the same
cluster gets closer, whereas data of different clusters gets further away

Limitations

Previous metric learning excludes unlabeled data during metric
training.

A single distance metric is used for all clusterings, forcing them to
have the same shape.
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Constrait-based method

K-means clustering:

Minimize
∑
xi∈X

||xi − µli ||
2

Semi-supervised clustering with constraints

Minimize
∑
xi∈X

||xi − µli ||
2

︸ ︷︷ ︸
Typical k-means

+
∑

(xi ,xj )∈M

wij1[li 6= lj ]︸ ︷︷ ︸
must-link

+
∑

(xi ,xj )∈C

w̄ij1[li = lj ]︸ ︷︷ ︸
cannot-link
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Metric-based Method

Euclidean distance:

||xi − xj || =
√

(xi − xj)T (xi − xj)

Mahalanobis distance:

||xi − xj ||A =
√

(xi − xj)TA(xi − xj)

where A is a covariance matrix.

A � 0

If a A is used for calculate distance, then each cluster is modeled as a
multivariate Gaussian distribution with covariance A−1.



Clustering with different shape

What if the shape of clusters are different?

Use different A for each cluster(Assign different covariance).

To Maximize the likelihood boils down to :

Minimize
∑
xi∈X

(
||xi − µli ||

2
Ali

− log(detAli )
)
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Combine Constraints and Metric Learning

Minimize
∑
xi∈X

[||xi − µli ||
2
Ali

− log(detAli )]︸ ︷︷ ︸
Metric Learning

+
∑

(xi ,xj )∈M

wij1[li 6= lj ] +
∑

(xi ,xj )∈C

w̄ij1[li = lj ]︸ ︷︷ ︸
Constraints

Intuitively, the penality wij and w̄ij should be based on distance of two
data points.

Minimize
∑
xi∈X

[||xi − µli ||
2
Ali

− log(detAli )]

+
∑

(xi ,xj )∈M

fM(xi , xj)1[li 6= lj ] +
∑

(xi ,xj )∈C

fc(xi , xj)1[li = lj ]
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Penality based on distance

Must-link: Violations means data belongs to different cluster.

fM(xi , xj) =
1

2
(||xi − xj ||2Ali

+ ||xi − xj ||2Alj
)︸ ︷︷ ︸

Average

The further away two data are, the more penality.

Cannot-link: Violations means data belongs to the same cluster.

fC (xi , xj) = ||x ′li − x ′′li ||
2
Ali︸ ︷︷ ︸

Maximum distant points

−||xi − xj ||2Ali

The closer two data are, the more penality.
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Metric pairwise constrained K-means(MPCK)

General Framework of MPCK algorithm based on EM

Initialize clusters

Repeat until convergence:

Assign Cluster to minimize the objective goal.
Estimate the mean
Update the metric

Difference with k-means

Cluster assignment takes constraint into consideration.

The metric is updated in each round.



Metric pairwise constrained K-means(MPCK)

General Framework of MPCK algorithm based on EM

Initialize clusters

Repeat until convergence:

Assign Cluster to minimize the objective goal.
Estimate the mean
Update the metric

Difference with k-means

Cluster assignment takes constraint into consideration.

The metric is updated in each round.



Initialization

Basic idea

Construct traversive closure of the must-link

Choose the mean of each component as the seed.

Extend the sets of must-link and cannot-link.

Construct traversive closure of the must-link

Must-link: {AB, BC, DE}; Cannot link: {BE};
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Cluster Assignment

1 Randomly re-order the data points

2 Assign each data point to a cluster that minimize the objective
function:

Minimize J =
∑
xi∈X

[||xi − µli ||
2
Ali

− log(detAli )]

+
∑

(xi ,xj )∈M

fM(xi , xj)1[li 6= lj ] +
∑

(xi ,xj )∈C

fc(xi , xj)1[li = lj ]



Update the metric

1 Update the centroid of each cluster

2 Update the distance metric of each cluster; Take the derivative of the
goal function and set it to 0 to get the new metric:

Ah = |Xh|

 ∑
xi∈Xh

(xi − µi )(xi − µi )
T

+
∑

(xi ,xj )∈Mh

1

2
wij(xi − xj)(xi − xj)

T1[li 6= lj ])

+
∑

(xi ,xj )∈Ch

w̄ij

(
(x ′h − x ′′h )(x ′h − x ′′h )T − (xi − xj)(xi − xj)

T
)

1[li = lj ]


−1



Some issues

1 Singularity: If the sum is singular, Set A−1
h = A−1

h + εtr(A−1
h )I to

ensure nonsiguarity.

2 Semi-positive definiteness: If Ah is negative definite, project it into
set C = {A : A � 0} by setting negative eigenvalues to 0.

3 Computational cost: Use diagonal matrix. Or the same distance
metric for all clusters.

4 Convergence: Theoretically, each step reduce the objective goal. But
if singularity and semi-positive definiteness are involved, the algorithm
might not converge in theory. Anyhow, it works fine in reality.
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Experiment Results(1)

A single diagonal matrix is used.



Experiment Results(2)

A single diagonal matrix compared with multiple full matrix.

Some phenomenons

Use different matrix and cluster and use full matrix definitely increase
the performance.

When the constraints are few, RCA seems working better than
MPCK-means. Why?
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Conclusions

By integrating metric learning and constraints during clustering, it
outperforms each single approach.

Questions?

Thank you!!
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