
Chapter 11: Sampling Methods

Lei Tang

Department of CSE
Arizona State University

Dec. 18th, 2007

1 / 37



Outline

1 Introduction

2 Basic Sampling Algorithms

3 Markov Chain Monte Carlo (MCMC)

4 Gibbs Sampling

5 Slice Sampling

6 Hybrid Monte Carlo Algorithms

7 Estimating the Partition Function

2 / 37



MCMC

We’ve discussed the rejection sampling and importance sampling to
find expectations of a function.

They suffer from severe limitations particularly in spaces of high
dimensionality.

We now discuss a very general and powerful framework called Markov
Chain Monte Carlo (MCMC).

MCMC methods have their origin in physics and started to have a
significant impact on the field of statistics at the end of 1980s.
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Basic setup

Similar to rejection and importance sampling, we again sample from a
proposal distribution.

We maintain current state z(τ), and the proposal distribution
q(z|z(τ)) depends on current state.

So the sequence z(1), z(2), · · · forms a Markov chain (the next sample
depends on the previous one).

Assumption: p(z) = p̂(z)/Zp where Zp is unknown and p̂(z) is easy
to compute.

The proposal distribution should be straightforward to draw samples.

Each cycle we generate a sample z∗ and accept it with proper criteria.
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Metropolis Algorithm

Assume the proposal distribution is symmetric:

q(zA|zB) = q(zB |zA)

The candidate sample z∗ is accepted with probability

A(z∗, z(τ)) = min

(
1,

p̂(z∗)
p̂(z(τ))

)
This can be done by choosing a random number u from a uniform
distribution over (0, 1), and accepting the sample if A(z∗, z(τ)) > u.

z(τ+1) =

{
z∗ if accepted

z(τ) if rejected

If p(z*) is large, it’s likely to be accepted.

As long as q(zA|zB) > 0, the distribution of z(τ) → p(z) when
τ →∞. (We’ll prove this later)
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How to handle dependence?

The sequence z(1), z(2), · · · , is not independent.

Usually, discard the most of the sequence and retain every Mth

sample.

Sometimes, need to throw away the first few hundreds samples if you
start from a not-so-good initial point (to avoid the burn-in period)
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An Example

The proposal distribution is Gaussian whose standard deviation is 0.2.
Clearly, q(zA|zB) = q(zB |zA).

Each step search in the space of a rectangle, but favor the samples
toward high-density.
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Common Questions

1 Why does Metropolis Algorithm work?

2 How efficient?

3 Is it possible to relax the symmetry property of proposal distribution?
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Random Walk: Blind?

To investigate the property of MCMC, we look at a specific example of
random walk first:

p(z(τ+1) = z(τ)) = 0.5

p(z(τ+1) = z(τ) + 1) = 0.25

p(z(τ+1) = z(τ) − 1) = 0.25

If start from z(0) = 0, then E [z(τ)] = 0;
Quiz: how to prove this?

E [z(τ+1)] = 0.5E [z(τ)] + 0.25(E [z(τ)] + 1) + 0.25(E [z(τ)]− 1)

= E (z(τ))
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Random Walk is Inefficient

How to measure the average distance between starting and ending points?

E [(z(τ))2] =
τ

2

E [(z(τ+1))2] = 0.5E [(z(τ))2] +

0.25(E [(z(τ))2] + 2E [z(τ)] + 1) +

0.25(E [(z(τ))2]− 2E [z(τ)] + 1)

= E [(z(τ))2] + 0.5

=⇒ E [(z(τ))2] =
τ

2

The average distance between start and ending points of τ steps is
O(
√
τ).

Random walk is very inefficient in exploring the state space.

A central goal of MCMC is to avoid random walk behavior.
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Markov Chain

p(z(m+1)|z(1), · · · , z(m)) = p(z(m+1)|z(m))

x1 x2 xM

Transition Probabilities: Tm(z(m), z(m+1)) = p(z(m+1)|z(m)).
A Markov chain is independent is homogeneous if the transition
probability are the same for ∀m.
The marginal distribution:

p(z(m+1)) =
∑
z(m)

p(z(m+1)|z(m))p(z(m)))

Stationary(invariant) distribution: each step in the chain leaves the
distribution invariant.

p∗(z) =
∑
z′

T (z′, z)p∗(z′)
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Detailed Balance

A sufficient (but not necessary) condition for ensuring the required
distribution to be invariant is

p∗(z)T (z, z′) = p∗(z′)T (z′, z)

This property is called detailed balance.

A Markov chain satisfy the detailed balance will leave the distribution
invariant: ∑

z′

p∗(z′)T (z′, z)

=
∑
z′

p∗(z)T (z, z′) (Property of detailed balance)

= p∗(z)
∑
z′

p(z′|z)

= p∗(z) (
∑
z′

p(z′|z) = 1)
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A Markov chain satisfy the detailed balance is reversible.

Detailed balance is stronger than the requirement of stationary
distribution.

Quiz: Can you give me a counter example?

Our goal is to set up a Markov chain such that the invariant
distribution is our desired distribution.
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Ergodicity

Goal: set up a Markov chain such that the invariant distribution is
our desired distribution.

We must require the ergodicity property: for m→∞, the distribution
p(z(m)) converges to the required invariant distribution p∗(z),
irrespective of the initial choice. The invariant distribution is called
the equilibrium distribution.

Each ergodic Markov chain can have only one equilibrium distribution.

It can be shown that a homogeneous Markov chain will be ergodic,
subject only to weak restrictions on the invariant distribution and the
transition probabilities.
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Weak restriction for ergodicity

If a homogeneous Markov chain on a finite state space with transition
probabilities T (z , z ′) has π as an invariant distribution and

ν = min
z

min
z ′:π(z ′)>0

T (z , z ′)

π(z ′)
> 0

then the Markov chain is ergodic. i.e. regardless of initial probabilities,
p0(z):

lim
n→∞

pn(z) = π(z)

A bound on the rate of convergence is given by

|π(z)− pn(z)| ≤ (1− ν)n
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Proof Outline

Decompose the distribution at time n as a “mixture” of the invariant
distribution and another arbitrary distribution;

The proportion with the invariant distribution approaches to 1 as n
approaches to infinity.

Specifically, pn(z) = [1− (1− ν)n]π(z) + (1− ν)nrn(z).

The theorem can be proved by induction.

pn(z) = [1− (1− ν)n]π(z) + (1− ν)nrn(z) is automatically satisfied
when n = 0 (Just set r0(z) = p0(z)).
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Proof

pn+1(z)

=
∑
z ′

pn(z ′)T (z ′, z)

= [1− (1− ν)n]
∑
z ′

π(z ′)T (z ′, z) + (1− ν)n
∑
z ′

rn(z ′)T (z ′, z)

= [1− (1− ν)n]π(z) + (1− ν)n
∑
z ′

rn(z ′)[T (z ′, z)− νπ(z) + νπ(z)]

= [1− (1− ν)n]π(z) + (1− ν)nνπ(z)

(1− ν)n
∑
z ′

rn(z ′)[T (z ′, z)− νpi(z)]

= [1− (1− ν)n+1]π(z) + (1− ν)n+1
∑
z ′

rn(z ′)
T (z ′, z)− νπ(z)

1− ν

= [1− (1− ν)n+1]π(z) + (1− ν)n+1rn+1(z)
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rn+1(z) =
∑
z ′

rn(z ′)
T (z ′, z)− νπ(z)

1− ν
must be a distribution

∑
z

rn+1(z) =
∑
z,z ′

rn(z ′)
T (z ′, z)− νπ(z)

1− ν

=

∑
z,z ′ rn(z ′)T (z ′, z)−

∑
z νπ(z)

1− ν
= 1

Note that rn(z) ≥ 0 as long as

ν = min
z ′

min
z:π(z)>0

T (z ′, z)

π(z)
> 0

T (z ′, z)− νπ(z) ≥ 0

Hence, rn(z) is a valid distribution.
Note that ν ≤ 1.
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A special case to satisfy the theorem is that

T (z ′, z) ≥ 0 for ∀z , z ′

The above theorem applies only to homogeneous Markov chains.

But the algorithm we’ll discuss is not homogeneous, but of a simple
cyclic type, in which Tn = Tn+d .

We can look at the state only at times that are multiple of d , then we
see a homogeneous Markov chain, with transition matrix
T0T1 · · ·Td−1.

If for a homogeneous Markov chain, condition does not hold for one
step but hold for the k-step transition probabilities T k . It’s also
sufficient.

How about contiguous version?
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Construction of Transition Probabilities

In practice, we often construct transition probabilities from a set of ’base’
transitions B1,B2, · · · ,BK .

T (z′, z) =
K∑

k=1

αkBk(z′, z) (1)

T (z′, z) =
∑
z1

· · ·
∑
zK−1

B1(z′, z1) · · ·BK−1(zK−2, zK−1)BK (zK−1, z)(2)

If the distribution is invariant with respect to base transitions, it will
be invariant for both (1) and (2).

If base transitions satisfy detailed balance, then T in (1) also satisfy
satisfy detailed balance. But T in (2) does not hold.

A common example of the use of composite transition probabilities is
where base transition changes only a subset of variables.
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Metropolis-Hastings algorithm

In previous Metropolis algorithm, the proposal distribution must be
symmetric.

Here is a generalization where the proposal distribution can be
asymmetric.

Only need to change the acceptance criterion to

Ak(z∗, z(τ)) = min

(
1,

p̂(z∗)qk(z(τ)|z∗)
p̂(z(τ))qk(z∗|z(τ))

)

This evaluation does not require knowledge of normalization.

For a symmetric proposal distribution, the Metropolis-Hastings
algorithm reduces to Metropolis algorithm.
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Invariant distribution

Ak(z′, z) = min

(
1,

p̂(z′)qk(z|z′)
p̂(z)qk(z′|z)

)
We show that p(z) is an invariant distribution of the Markov chain, by
showing the detailed balance is satisfied.

p(z)T (z , z ′) = p(z)qk(z ′|z)Ak(z ′, z)

= min(p(z)qk(z ′|z), p(z ′)qk(z |z ′))

= min(p(z ′)qk(z |z ′), p(z)qk(z ′|z))

= p(z ′)qk(z |z ′)Ak(z , z ′)

= p(z ′)T (z ′, z)

How about those samples being kept?
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Proposal distribution

The proposal distribution can affect the performance of sampling.

For continuous state space, a common choice is a Gaussian centered
on the current state.

If the variance is small, the proportion of accepted transitions will be
high, but the progress through the state space takes the form a slow
random walk.

If the parameter is large, then the rejection rate will be high, many of
the proposed steps will be to states for which the probability p(z) is
low.

σmax

σmin

ρ
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σmax

σmin

ρ

This suggest that ρ should be of the same order as the smallest length
scale σmin. However, for those extended dimensions, the number of
steps required to obtain an independent sample is O(σmax

σmin
)2.

Generally, for a multivariate Gaussian, the number of steps required to
obtain independent samples scales like (σmax

σ2
)2 where σ2 is the 2nd

smallest standard deviation.

If the length scales over which the distributions vary very different in
different distribution, the Metropolis Hasting algorithm can have very
slow convergence.
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Comments

Metropolis-Hasting Algorithm requires a proposal distribution for
sampling. If the sample is high-dimensional, each time requires a
sampling from a multi-variate distribution.

Each time we obtain a sample.

Is it possible to remove the requirement of proposal distribution? Or
find a proposal distribution such that it matches the contour of the
true distribution?

Gibbs Sampling — Bingo!!
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Gibbs Sampling

Suppose we have a distribution p(z1, z2, z3) over three variables. At step

τ , we have selected values z
(τ)
1 , z

(τ)
2 , z

(τ)
3 .

1 Replace z
(τ)
1 by a new value z

(τ+1)
1 by sampling from

p(z1|z(τ)
2 , z

(τ)
3 )

2 Replace z
(τ)
2 by a new value z

(τ+1)
2 by sampling from

p(z2|z(τ+1)
1 , z

(τ)
3 )

3 Replace z
(τ)
3 by a new value z

(τ+1)
3 by sampling from

p(z3|z(τ+1)
1 , z

(τ+1)
2 )

4 Obtain a new sample (z
(τ+1)
1 , z

(τ+1)
2 , z

(τ+1)
3 ). Repeat the above

procedure.
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Gibbs Sampling algorithm

Note that each time we draw sample based on newly obtained value.
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Invariant Distribution

When we sample from p(zi |{z\i}), the marginal distribution p(z\i ) is
unchanged as the values of z\i are not changed.

Each step by definition, samples from the correct p(zi |z\i ). So, the
conditional and marginal distribution specify the joint distribution,
which is invariant.

To draw a new sample, multiple steps are performed. As each step is
invariant, the distribution is invariant.

Ergodicity

A sufficient condition: None of the conditional distribution be
anywhere zero. In other words, any point in z space can be reached
from any other point in a finite number of steps.

If the above condition is not satisfied, need to analyze carefully.
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Connection to Metropolis-Hastings algorithm

Gibbs sampling can be considered as a special case of Metropolis-Hastings:

where
q(z |z∗) = p(z∗\k)p(zk |z∗\k)

and
z∗\k = z\k
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Quick Review of Gaussian (1)

If (
xa

xb

)
∼ N

[(
µa

µb

)
,

(
Σaa Σab

Σba Σbb

)]
So

p(xb|xa) = N(µb + ΣbaΣ−1
aa (xa − µa),Σbb − ΣbaΣ−1

aa Σab)
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Quick review of Gaussian (2)

If

P(x) ∼ N(µx ,Σx)

P(y |x) ∼ N(Ax + b,Σy |x)

then

P(y) ∼ N(Aµx + b,Σy |x + AΣxAT )

cov(x , y) = ΣxAT
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Example

Suppose the target distribution is

(X ,Y ) ∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
Gibbs sampler:

[X |Y = y ] ∼ N(ρy , 1− ρ2)

[Y |X = x ] ∼ N(ρx , 1− ρ2)

Start from (X ,Y ) = (10, 10), we can have a look at the trajectory

32 / 37



33 / 37



34 / 37



Random Walk Behavior

Marginal Distribution:
P(X ) ∼ N(0, 1);

z1

z2

L

l

If ρ is large, then each step would
move only a short distance
(σ2 = 1− ρ2). The number of steps
to obtain independent samples
would be of order O((L/l)2).

If the Gaussian distribution is
uncorrelated, then the Gibbs
sampling procedure would be
optimally efficient.

Some approaches to reduce the
random walk behavior in Gibbs
sampling: over-relaxation.
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Applicability of Gibbs sampling

Especially working on cases where joint distribution is unknown but
conditional distribution is easy to sample.
For undirected graphical models, only rely on its neighbors;
For directed graphical models, only rely on its Markov Blanket.
If the graph is constructed using exponential family distribution, and
the parent-child relationship preserve conjugacy, then the conditional
distribution in Gibbs sampling will have the same functional form.
Usually, the full conditional distribution would be complicated. But if
it’s log concave, adaptive rejection sampling can be used.
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Factors to produce a good Monte Carlo estimate

The amount of computation required for each transition;

The time for the chain to converge to the equilibrium distribution;
(Need to discard from the samples from the beginning)

the number of transitions needed to move from one state drawn from
the equilibrium distribution to another state that is almost
independent. (which determines the number of states taken from the
chain)
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