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For simplicity, we assume all Kernel matrix have the same trace
(without scaling problem). Given G1, G2, · · · , Gp, the weight for
each kernel is βk , and

∑
βk = 1.

Goal

min
β

max
α

αT e − 1

2
αTdiag(y)

(
p∑

k=1

βkGk

)
diag(y)α

s.t. αT y = 0

C ≥ α ≥ 0

βT e = 1, β ≥ 0
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min
β

max
α

αT e − 1

2
αTdiag(y)

(
p∑

k=1

βkGk

)
diag(y)α

= max
α

min
β

αT e − 1

2
αTdiag(y)

(
p∑

k=1

βkGk

)
diag(y)α

= max
α

αT e − max
sumkβk=1

1

2

p∑
k=1

βk

(
αTdiag(y) Gk diag(y)α

)
= max

α
αT e −max

i

(
1

2
αTdiag(y) Gk diag(y)α

)
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QCQP

So the problem can be reformulated as

maxalpha αT e − 1

2
t

s.t t ≥ αT y = 0

C ≥ α ≥ 0

t ≥ 1

2
αTdiag(y) Gk diag(y)α ∀k

This is a QCQP problem, which can be solved by general
optimization package. But it does not scale up!!
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Let

Sk(α) = αT e − 1

2
αTdiag(y)Gkdiag(y)α

As
∑

βk = 1, the objective becomes

min
β

max
α

p∑
k=1

βkSk(α)

So the goal is equivalent to

min
β

max
α

p∑
k=1

βkSk(α)

s.t. αT y = 0

C ≥ α ≥ 0

βT e = 1, β ≥ 0
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min
β

max
α

p∑
k=1

βkSk(α)

s.t. αT y = 0

C ≥ α ≥ 0

βT e = 1, β ≥ 0

Assume α∗ is the optimal, let θ∗ :=
∑p

k=1 βkSk(α) would be the
maximal,

p∑
k=1

βkSk(α) ≤ θ∗
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Semi-Infinite Linear Programming (SILP)

min θ

s.t. β ≥ 0,
∑
k

βk = 1

p∑
k=1

βkSk(α) ≤ θ

for all α ∈ RN , 0 ≤ α ≤ C , αT y = 0

Note that θ and β are linearly constrained with infinitely many
constraints for all possible α.
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Algorithms to solve SILP

max θ

s.t. β ≥ 0,
∑
k

βk = 1,

p∑
k=1

βkSk(α) ≥ θ

for all α ∈ C

Column Generation

1. Restricted master problem: Compute optimal (β, θ) for a
restricted subsets of constraints (Typical Linear Programming
problem)

2. Add the constraints that maximize the constraint violation for
the given intermediate solution (β, θ). (Exactly an SVM dual
formulation with a combined kernel)

Idea is exactly the same as cutting plane
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Other tricks to accelarate calculation

Step 2 is not necessary to be exact if β is still far away from
optimal.

Chunking : maintain a smaller number of optimization
variables.

Warm Start for step 1 to solve LP

Specific data structure to maintain the gram matrix (tries),
save memory. Kernel caching.

Parallel processing

Works up to 20 kernels and one million examples
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Another formulation

Goal

min
β

max
α

αT e − 1

2
αTdiag(y)

(
p∑

k=1

βkGk

)
diag(y)α

s.t. αT y = 0

C ≥ α ≥ 0

βT e = 1, β ≥ 0

Let

J(β) =


maxα αT e − 1

2αTdiag(y)
(∑p

k=1 βkGk

)
diag(y)α

s.t. αT y = 0
C ≥ α ≥ 0
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The problem can be reformulated as

min
β

J(β) such that

p∑
k=1

βk = 1, β ≥ 0

Let α∗ be the optimal value for J(β), then

J(β) = α∗T e − 1

2
α∗Tdiag(y)

(
p∑

k=1

βkGk

)
diag(y)α∗

∂J(β)

∂βk
= −1

2
α∗Tdiag(y) Gk diag(y)α∗
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Steepest Decent Algorithm

For fixed β, calculate the optimal J(β); (Exactly an SVM
problem)

Calcuate a decent direction for β such that the constraint is
satisfied.

Update beta by finding the step length using some line search
method (e.g. Armijo’s rule). This involves multiple evaluatons
of J(β) ( A single kernel SVM) with some small variants of β.
This could be speed up by initilizing the SVM with α∗.
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Cuttting Plane v.s. Steepest Decent

Cutting plane graduatelly add constraints whereas steepest
decent involves fixed number of constraints in each iteration.

Both involves calculation of SVM in each iteration. Steepest
Decent involves a little more calculation while computing the
step length.

Convergence Analysis: Both converge. But Cutting planes
method are unstable, especially when the number of
lower-bounding affine functions is small.
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