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MiniMax problem
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The complexity of gradient and optimal method;

Optimization with functional constraint (General constrained
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MiniMax Problem

@ Objective function is composed with several components.
@ The simplest problem of that type is minimax problem.

o We'll focus on smooth minimax problem:

min f(x) = lg_agxm fi(x)

where f; € S;i(R”), i=1,--- ,mand Q is a closed convex set.

o f(x): the max-type function composed by the components f;(x).
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MiniMax Problem

Objective function is composed with several components.

The simplest problem of that type is minimax problem.

We'll focus on smooth minimax problem:

min f(x) = 1rgl_agxm fi(x)

where f; € S;i(R”), i=1,--- ,mand Q is a closed convex set.

f(x): the max-type function composed by the components f;(x).

In general, f(x) is not differentiable.
We use f € Sii R™) to denote all the f; € Sii(R") J
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Connection with General Minimization Problem
General Minimization Problem

min  fo(x)
sit. fi(x)<0, i=1--.,m
x€Q 3

—~
N =
SN— N

~—

—
N,

parametric max-type function
f(t; x) = max{fo(x) — t; fi(x)}

Will be showed later:
o the optimal value of fy(x) corresponds to the root t of f(t; x) = 0;

@ minimax problem is used as a subroutine to solve (1);
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Linear approximation

Linearization

max-type function  f(x) =  max fi(x)
<i<m

linearization of f(x)  f(X;x) = 1r%1iagxm[ﬁ()‘<) + (£ (%), x — X)]

Essentially, linearization over each component.

Properties

o f(x;x) + 5llx = xI* < £(x) < £(%ix) + 5lIx — X|%
o x* € Q& f(x*;x) > f(x*; x*) = f(x¥).
o f(x) > f(x*) + §llx — x*||?

@ the solution x* exists and unique.
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Lemma 2.3.1

1,1
o ficS, (R

@ For strongly convex function, we have

fi(x) > () + (f(Zx— X))+ Slx = =P

= f(xix)+ Sllx— I

Take the max on both sides: f(x) > f(x;x) + &|[x — x||?
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Lemma 2.3.1

1,1
o ficS, (R

@ For strongly convex function, we have

fi(x) > () + (f(Zx— X))+ Slx = =P

= f(xix)+ Sllx— I

Take the max on both sides: f(x) > f(x;x) + &|[x — x||?

@ For Lipshitz continuous function, it follows

) < AR+ (F(Rx —30) + gl — P

L
= F(%x) + 5lbx - 5P
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Lemma 2.3.1

1,1
o ficS, (R

@ For strongly convex function, we have

filx) 2 %)+ (F(x,x =) + SlIx x|

= f(xix)+ L]x — 512

Take the max on both sides: f(x) > f(x;x) + &|[x — x||?

@ For Lipshitz continuous function, it follows
= /(< = L <12
filx) < fi(%)+ (% x = %) + 3lx = x|

L
= F(%x) + 5lbx - 5P

@ max operation keeps the property as smooth strongly convex function.
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Theorem 2.3.1: x* € Q & f(x*; x) > f(x*; x*) = f(x¥)

< As f(x) > f(x;x) + &|x — x||%, we have

F) = () + Bl = 1P > Fxx) +0 = £(x°)
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Theorem 2.3.1: x* € Q & f(x*; x) > f(x*; x*) = f(x¥)

< As f(x) > f(x;x) + &|x — x||%, we have
f(x) > f(x*x)+ ng —x*|]2 > f(x*; x*) + 0 = f(x¥)
= Prove by contradiction: if f(x*; x) < f(x*), then for 1 </ <m
fi(x*) + (F (% x), x — x*) < f(x*) =  max_ fi(x*)
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Theorem 2.3.1: x* € Q & f(x*; x) > f(x*; x*) = f(x¥)

< As f(x) > f(x;x) + &|x — x||%, we have
f(x) > f(x*;x)+ ng — X2 > f(x*; x*) + 0 = f(x¥)
= Prove by contradiction: if f(x*; x) < f(x*), then for 1 </ <m
fi(x*) + (F (% x), x — x*) < f(x*) = max fi(x™)
Define ¢j(a) = fi(x* + a(x — x*)), « € [0,1]
So either ¢;(0) = fi(x*) < f(x*) or
¢i(0) = £(x7), j(0) = (£(x"),x — x*) <0
So small enough «,
fi(x* 4+ a(x —x")) = ¢i(a) < F(x*) VI<i<m

contradiction!
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Theorem 2.3.1: x* € Q & f(x*; x) > f(x*; x*) = f(x¥)

< As f(x) > f(x;x) + &|x — x||%, we have
f(x) > f(x*;x)+ ng — X2 > f(x*; x*) + 0 = f(x¥)
= Prove by contradiction: if f(x*; x) < f(x*), then for 1 </ <m
fi(x*) + (F (% x), x — x*) < f(x*) = max fi(x™)
Define ¢j(a) = fi(x* + a(x — x*)), « € [0,1]
So either ¢;(0) = fi(x*) < f(x*) or
¢i(0) = £(x7), j(0) = (£(x"),x — x*) <0
So small enough «,
fi(x* 4+ a(x —x")) = ¢i(a) < F(x*) VI<i<m

contradiction!

Linearization achieves its minimum at x*
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Corollary 2.3.1
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So if x* exists, it must be unique.
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Let a max-type function f(x) € Sﬁ(R”), p >0, and Q be a closed convex
set. Then the solution x* exists and unique.

o Let x € Q, consider the set @ = {x € Q|f(x) < f(X)}.
@ Transform to a problem as

min{f(x)|x € Q}
o Need to show @ is bounded.
F(%) = fi(x) = () + (F(X).x = %) + S llx = I
- g\l><—>'<||2 < NFG - llx = Xl + £(%) = £i(%)
@ So the solution x* exists and is unique
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MiniMax, though generally not smooth, share all the properties as
minimizing smooth strongly convex functions over simple convex set.

Linearization

max-type function f(x) =  Max fi(x)
<i<m

linearization of f(x)  f(X;x) = lr;\iasxm[ﬁ(;() + (£ (%), x — X)]

Essentially, linearization over each component.

| A\

Properties
o f(%ix) + 5llx = X||* < f(x) < f(x:x) + 5lIx = x||%
o x* € Q& f(x*;x) > f(x*; x*) = f(x*).
o f(x) > f(x*)+ &llx — x*||?

@ the solution x* exists and unique.
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MiniMax problem
Gradient Mapping for MiniMax problem;
The complexity of gradient and optimal method;

Optimization with functional constraint (General constrained
optimization problem)

o Constrained Minimization Problem

As expected, share most of the properties as minimization over simple
convex set.
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Gradient Mapping

Similar as the case on minimization with convex set, we can define gradient mapping as follows:

(i x) = f(xx)+ %Hx —x|[*>  (quadratic approximation) (4)
f*(x; = infy(Xx; 5
(x:7) min £ (% x) (5)
x¢(X;v) = argminfy(X;x) (6)
x€EQ
gr(xv) = v(E—x(x7)) (gradient mapping) ()

The only difference is the linearization part f(x; x).
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Gradient Mapping

Similar as the case on minimization with convex set, we can define gradient mapping as follows:

(i x) = f(xx)+ %Hx —x|[*>  (quadratic approximation) (4)

f*(x; = infy(Xx; 5

(x:7) min £ (% x) (5)

x¢(X;v) = argminfy(X;x) (6)
x€EQ

gr(xv) = v(E—x(x7)) (gradient mapping) ()

The only difference is the linearization part f(X; x).
@ When m = 1(only one component), the same as minimization over simple convex set;
@ the linearization point x does not necessarily belong to Q;
@ f,(X; x) is a max-type function composed with components:

F(R) + (F(R),x = %) + S lx = =I? € SYL(R™, i=1,--.m 8)
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Linearization and gradient mapping

f(x) is bounded by the linearization (plus quadratic term), Could we somehow bound the
linearization part with gradient mapping?

Theorem 2.3.3
Let f € S‘IL‘YIL(R"), then for all x € Q

f(xx) = F5(x:7) + (gr (X 1), x = %) + %ng’()_ﬂ 2l 9)
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Linearization and gradient mapping

f(x) is bounded by the linearization (plus quadratic term), Could we somehow bound the
linearization part with gradient mapping?

Theorem 2.3.3

| A\

Let f € S‘IL‘YIL(R"). then for all x € Q

(320 2 £ (Ri7) + (&r(Ri)ox = ) + - eI (©)
F(Rix) = F£(xix)— %Hx — x| (10)
> fw(i:Xf)Jr%(HX—Xsz—HX—>'<||2) (11)

£y (zx) €SV (R)
= )+ g«;fxf,zxfxf — %) (12)
= )+ g<(>-<—xf,2(x—>-<) + (% = xp) (13)
= ) + e x— %) + ol (14)
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Properties with respect to gradient mapping

Since (%;x) > (%) + (gr(%i7), x — %) + 55 |lgr (% )|

Corollary 2.3.2 Let f € S} (R") and 5 > L. Then:
1. Forany r € Q and T € R™ we have:

. - - 1 e =
F(@) 2 Flas @) +{og@ )2 — 5 + 5 | 9@ ) I +g [Ea- g (2.3.7)
2. Ifz € @ then |
flzp(z7) < fz) — 2 Il 97( ) 1%, (2.3.8)
3. For any © € R™ we have:
O | . By v -
os@E.2 -2 2 - log@) P45 1" -2 . (2.3.9)
Proof:
Assumption v > L implies that f*(Z:+) > f(z;(Z:7v)). Therefore (2.3.7) follows from (2.3.6)
since

J@) 2 fEa) + S 2 -3 P

for all z € R™ (see Lemma 2.3.1).
Using (2.3.7) with x = Z, we get (2.3.8), and using (2.3.7) with z = z*, we get (2.3.9)

since f(xg(z;7)) — f(z*) = 0. 0
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Variance with respect to

Lemma 2.3.2 For any 71, 72 > 0 and T € R" we have:
T2—n

—— | gr@m) II*-
L as(@ ) |

(@) = f1 (@) +
Proof:
Denote x; = z¢(Z; %), 9: = 95(F; 7). i = 1,2. In view of (2.3.6), we have:
_ o, _ s _ 1 i 2
fED+ 22—z P2 fEn) +Honz—D o la P+ 2 | 2—Z|* (23.10)
2 oM 2
for all € Q. In particular, for z = z9 we obtain:

FF@Em= f@o)+%z—z|

> @) +Hom—D+a o P+E |z —2 |
= FEvw e ol —5lone + 5, e l?
> fEm) e e P —s= e l?
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MiniMax problem
Gradient Mapping for MiniMax problem;
The complexity of gradient and optimal method;

Optimization with functional constraint (General constrained
optimization problem)

Constrained Minimization Problem
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Gradient Method: Comparison

General Scheme for Gradient Method:

X0 € Q,
Xkp1 = Xk — hgr(xii L), k=0,---

On minimization over Minimax Problem

If we choose h < % in General Scheme for Gradient Method, then
[k = x*[* < (1 — ph)* [0 — x*||. (15)

Ifh=1
% k
e =12 < (1= £)" o = x| (16)

the gradient method has the same rate of convergence as in the smooth case.

Let re = |lx — x*[l, & = gr(xki L), (As 2(g, xk —xx) > 2 lgll* + pllxi — x*|?)

”1%+1 = |xx—x*— hgr”2
= rg —2h{gr,x — x*) + h?| gf|?

1
(1= b} + h(h = Dllerl? < (1 = T)rE.

IA
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Minimization Method - Optimal Method

@ Step 1: define the estimate sequence Assume that we have xp € Q. Define

bo(x) = 65+ 5 lx—wlP, (17)

1
Bx) = (1 aou o [F(x0) + (g0 x ~ ) + - ol + e ] (19)

where xq = xq(yk; L) and gq = gq(y«: L)-
@ Step 2: rewrite the sequence {¢,(x)} For k > 0, we have

() = 8} + T lx = el (19)

where the following recursive rules are defined for vy, vk, and ¢} as

Terr = (1= o)y + o, (20)
1
Vel = ——[(1 = )y v + ey — cgql, (21)
Vk+1
o (1 - o +anf(xg) + (2% — %) gl
= -« ayf(x — — —k
k+1 k) Pk kTAXQ 2L 2vis1 gQ

1 —
+ak( )Yk

n
e (5”)’1( —vill> + (gq: vk — }’k>) . (22)
N
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Minimization Method - Optimal Method

@ Step 3: ensure ¢} > f(xx) Using the inequality

1 H
f(x) = f(xq) + (80> xk — y) + legall2 + 5 I - vl (23)

we come to the following lower bound

2
* a a
brn > (1= a)fOa) + akf(xQ) + | = — —*— | |lgoll?
2L 2y

1 —
ol o (1

v — viell> + (gq, vk — }’k>)
Yk+1 2

Y

1 O¢2 Yk
g (Vk = ¥ik) + Xk — Yk ) -
+1

fxQ)+ | — — 2lP+1l-a <g,
(xQ) <2L 2’Yk+1>” ell*+( k) o7,

Therefore, we choose

Xk+1 = XQ;
Lo2 = (1— o)k + okt = Yiits
1
Yo = ———— (VK + Yhr1Xk)-
Yk + ot
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Constant Step Scheme 3 for Simple Set

@ Choose xg € Q and ag € (0,1). Set yo = x0,q = /L.

@ kth iteration (k > 0).
o Compute f(yx) and f/(yx). Set
Xk+1 = XQ- (24)
o Compute axi1 € (0,1) from the equation
2 2
ahyr = (1 — apy1)og + qokqa,
and set

ak(l - a)
o + o1

Bk =

s Ykl = X1 + Bre(Xeq1 — Xi)- (25)

Note that only {xx} are feasible for Q, while {yx} can not be guaranteed to be feasible.
Completely identical to unconstrained case. The convergent rate is exactly the same as

unconstrained case.
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Convergence Rate

Theorem 2.3.5 Let the maz-type function f belong to Sﬁi(R“). If in (2.3.12) we take
ag = /&, then

Fa) — f* < [f(xﬂ)—f“r% | zp — z* IIQ] xmin{(l_ \/%)kmﬁiiw}

where vy = co(aol—p)

1-ag

21/39



Convergence Rate

Scheme for f € 8,7 (R") (2.3.13)

0. Choose zp € Q). Set yg = x0, 8 = ﬁ;ﬁ

1. kth iteration (k > 0). Compute { fi(yx)} and {f/(yx)}. Set
zpp1 = zp(yr L), Y1 = Thr1 + B(Zrpr — zi)-

Theorem 2.3.6 For this scheme we have:

k
)
flaw) ~ £ <2(1- /B (@) - 7). 23.14)
Proof:
Scheme (2.3.13) corresponds to ag = \/% Then vy = u and we get (2.3.14) since f(zg) >
"+ % | 2o — =* || in view of Corollary 2.3.1. O

22/39



Optimization with Functional Constraints

Problem 2.3.16

min  fo(x) (26)
s.t. fi(x)<0, i=1,---.m (27)
x€Q (28)

v

parametric max-type function
f(t; x) = max{fo(x) — t; fi(x)}
f(t;-) are strongly convex in x. For any t, x*(t) exists and unique.
f*(t) = min f(t; x
(£) = min f(t:x)
We'll try to get close to the solution using a process based on the

approximate values of the function f*t(x) (aka. sequential quadratic
programming)
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Lemma 2.3.4

Lemma 2.3.4 Let t* be the optimal value of the problem (2.3.16). Then
() < 0 foradlt=t*,

FHE) 300 forddlt <

Proof:
Let 2* be the solution to (2.3.16). If t = ¢* then

f1(#) = f(t2") = max{fo(z*) — t; fi(z")} < max{t" —¢; fi(z*)} < 0.
Suppose that ¢t < t* and f*(t) < 0. Then there exists y € @ such that
gyt <ty Ll a=1,...m

Thus, t* cannot be the optimal value of (2.3.16).

Note that, as t increases, f*(t) decreases in a sense.

Hence, the smallest root of the function f*(t) corresponds to the optimal
value of the problem of functional constraint.

Our goal is to form a process of finding the root.
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Properties of f*(t)

Lemma 2.3.5 For any A > 0 we have:
) —A<L fE+A) < @)

Proof:
Indeed,

fHt+A) =min max {fo(z) —t — A, fi(z)}

ze@ 1<i<m

< min max {fo(z) — & fi(z)} = f*(t),

ze@ 1<i<m

E+A) = Izréin ma.xl{fg(z) —t; fi(z) + A} — A

Q 1<i<n

Zmin max {fy(x) — & fi{z)} —A=f*(t) —A. O

ze@ 1<i<m

@ Thus, f*(t) decreases in t and is Lipshitz continuous with the
constant equal to 1.

@ Keep in mind that here the property is satisfied for any max-type
function like f,(x; x) and f.(X; x).
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For any t; < tp and A > 0, we have

Fr(t) — F(t2) _ f*(tl)—Af*(t2) — (1)

ff(ti—A) > F(t1)+A
(LA th—t th—t

(29)

A
tr—to’

lettg =t — A, a= then t; = (1 — a)ty + aty, so

A bt
(29) :=f*(t1) < (1 — )f*(to) + af*(to) A

Let o = (1 — a)z*(to) + ax*(ty). We have:
(1) < max {folra) = t; filwa)}
< max {(1 = a)(fola* (1)) = fo) + ool (t2)) = t2): (1 = @) fi(a*(t0)) + @ fi(a"(12))}
= (0= ) e Gnla () = fos (=" (al)} + o Jpage Lo (o)) = s e ()}

= (L—a)f*(to) +af'(t2),
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Lemma 2.3.5
For any A > 0, we have:

FE(t) — A < F*(t + A) < F*(t)

| A\

Lemma 2.3.6
For any t; < tp and A > 0, we have

fr(t) — () _ F(ty) — Al () — (1)
th — t1 bb—t

Fr(t — A) > F*(t) + A

@ Both Lemmas are valid for any parametric max-type functions.
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Linearization and Gradient Mapping

Linearization of f(t; x):

f(t%x) = f(t;)'(;x)+%l||x—>'<]|2 (30)
(t;x;y) = )r(gigfv(tﬂ(;x) (31)
xe(tix;y) = argeng)infv(t;%;’y) (32)
gr(tixiv) = (X —xe(t:x;7)) (33)

gr is the constrained gradient mapping; X is not necessarily in Q.
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Bounds for the Linearization

X
2

£t x) = f(t: % x) + = |Ix = X|1?

o f,(t;X;x) is itself a max-type function;
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Bounds for the Linearization

o f,(t;X;x) is itself a max-type function;

o £,(t;X;x) € SSA(R"). So for any t, the constrained gradient mapping
is well defined;
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Bounds for the Linearization

f,(t; x; x) is itself a max-type function;

f,(t; X x) € SYL(R™). So for any t, the constrained gradient mapping
is well defined;

fu(t; X x) < f(t;x) < fi(t; x; x), as f(t; x) € S}Li(R"); Hence

fo(t X x) < £7(t) < f(t: % x)

For any x € R", v >0, A >0 and t; < tp, we have

r(t — Ay xy) > £ (1 %) +

Ho gl (%) = (8 %))

£t % 1) > F*(t;x; L) — é—;ﬁ\gr(f;;ﬁ L)|1?
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Root of f*(t;x; 1)

@ We are interested in finding the root of the function f*(t). We focus
on the approximation of £,(t;x; 7).

Lemma 2.3.7 Let # € R and t < t* are such that
frtzp) = (L=n)f (ETL)

for some k € (0,1). Thent < t*(z,t) < t*. Moreover, for anyt <t and x € R™ we have:

FlteiL) > 20— 5) (R F L)
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Root of f*(t;x; 1)

@ We are interested in finding the root of the function f*(t). We focus
on the approximation of £,(t;x; 7).

t*(x; t) = root:(f*(t; x; 1))

@ The root of the lower-bound quadratic approximation.

o Notice that the notation is a little confusing here t*(x; t) actually
depends on X, not t.

Lemma 2.3.7 Let # € R and t < t* are such that
frtzp) = (L=n)f (ETL)

for some k € (0,1). Thent < t*(z,t) < t*. Moreover, for anyt <t and x € R™ we have:

FlteiL) > 20— 5) (R F L)
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Lemma 2.3.7

Lemma 2.3.7 Let ¥ € R" and t < t* are such that

t*. Moreover, for any t <t and x € R™ we have:

IA

Jor some 1 € (0,1). Thent < t*(7,1)

Proof:
Since < t*, we have:

0< f(#) < f'(H5L) < mf*(f;i‘;,u).

Thus, f*(¢;z; p) > 0 and therefore t*(Z,t) > t since f*(¢;Z; u) decreases in ¢.
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Denote A =t — t, Then,

(t;x; L) > (t) > (t;x; 1) (34)
> f*(f;)‘(;u)+ﬁ [f*(f;)‘(;,u)f*(t*()‘(, t), X, 1)
=0
> (1- n)(l + ﬁ) (% L) (35)
> (1-r)2y ()?;At) - (36)
= 2(1—r)f(t;x; L) (37)
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Constrained Minimization Scheme (2.3.22)
0. Choose 2 € @ and ty < t*. Choose & € (0, %) and the accuracy e > 0.

1. kth iteration (k > 0).

a). Generate the sequence {ry;} by the minimax method (2.3.13) as applied to the
max-type function f(#;x) with the starting point rgo = p. If

Ftesongs ) 2 (1= 1) f* (Es o L)
then stop the internal process and set j(k) = 7,

7 (k) :argogljig?(k) T (e anyi L),

ey = (e L= (k) L).

Global Stop: Terminate the whole process if at some iteration of the internal scheme
we have f*(tix),;: L) < €.

1)). Set tk+1 = t*(ll:k,j(k% lLk) O

33/39



Comment on the Scheme

Essentially two steps:

@ Given t, find x until the lower bound f(t; X; 1) and the upper bound
f(t; x; L) of f(t,X) is not too distant; Then pick the minimum one
during the internal process;

o Given x, update t via finding the root of the lower bound;

QCQP:

of the function
St = 1;:18 Jult; T50),

where f,(t; 7;x) is a max-type function composed with the components
To(@) + {f3(@), 0 =7y + 5 || o =7 |* =,
FE+HE@ -+ la—2 )% i=1...,m.
In view of Lemma 2.3.4, it is the optimal value of the following minimization problem:
min [fo(F) + (f5(F), 0 —2) + 4 ||« — 7 |]?],
st fil®) + (F(E) e =)+ 4 [l —FP<0,i=1,..., m,

req.
@ The master process is continued until the upper bound function is
close enough to 0 (< €)

o We start from a tp < t*, and increases t gradually.
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Following

@ Here, we only focus on analytical complexity of this method.
@ The total cost is of the order

to—t* /L L
In —Iny/—
€ u I

@ This value differs from the lower bound for the unconstrained
minimization problem by a factor of In l% (Not quite sure)

@ Thus, the scheme is suboptimal for constrained optimization
problems. But we cannot say more since the specific lower complexity
bounds for constrained minimization are not known.
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Following

@ Here, we only focus on analytical complexity of this method.
@ The total cost is of the order

to—t* /L L
In —Iny/—
€ u I

@ This value differs from the lower bound for the unconstrained
minimization problem by a factor of In ﬁ (Not quite sure)

@ Thus, the scheme is suboptimal for constrained optimization
problems. But we cannot say more since the specific lower complexity
bounds for constrained minimization are not known.

We'll estimate the complexity of the master process;

@ Then estimate the complexity for the internal process (given t,
estimate an x);

o Finally, we get the total complexity.

35/39



Lemma 2.3.8: complexity of master process

Lemma 2.3.8

t—t 1 Ls
*(tis xe1; L) < 0 [ ]
11—k

1 £ (th X jkys L)
Let B= ———(<1las k<05 o= ———— =
2(1—&)( ) Vitk+1 — tk

Lemma 2.3.7

For t <t < t*(x,t) < t*, we have

t—t

(6% L) 2 2(1 - r)fF (£ X L) t(xit) - ¢

(38)

Let t = tk—17f =t t*()?; t) = tk+1(AS tky1 = t*(Xk,j(k)a tk)), we have

£ (ki Xiejoyi L) F* (tk—13 Xk—1,j(k—1)i L)
<

2(1 - & < = 54 < BO)_ 39

Y e V= t1 S

F* (ti Xk jkyi L) = 0kev/tirt — te < BX80+/tirr — t (40)
t) = i

= BKF* (t0; X j(0)i L)1 |~k (41)
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Lemma 2.3.8: complexity of master process

Lemma 2.3.8

t* — 1 ks
*(tis xe1; L) < 0 [ ]
11—k

1 £ (th X jkys L)
Let B= ———(<1las k<05 o= ———— =
2(1—&)( ) Vitk+1 — tk

Lemma 2.3.5

For any A > 0, we have:
FA(t) = A < FH(t+A) < F(1)

Let t; = to + A, we have t; — tg > f*(to;xoyj(o);p.). So

tel — 1t

F*(ti X L) = BFF*(toi %4 j(0)i L) ﬁ N
< k% (¢ L et — B N
< BKF* (0 xq.j(0)i L) (10 0,/(0) 1) )

/Bk : ﬂk " *
= 9z /-;\/f (to: x0,j(0); W) (tk+1 — tk) < 1-k reo =)
5 s ’, 1 ~‘k * <

< Lol L1 s () < o) 645)9



Lemma 2.3.8: complexity of master process

Master Process

- 1 In t* — o
C In2(1—r)] (1 —k)e

T<e=>N(e)

£ —t, 1
*(tis xie1; L) < 0 [

11—k [2(1—k)
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Complexity of Internal Process

Lemma 2.3.10 For all k, 0 <k < N, we have:

Jk) < 1+\/§-111M
"

[ AvaR)

Corollary 2.3.3

Iz\fjj(k) <(N+1) [1+\/_ lnz(L“] \/_ lnAHl.

k=0
L 20L — A
Feityl m AT WA
1 KofLe
Corollary 2.3.4

L 2(L — L A
J +Zj '\+2)[1+ 74111(7#>}+ *’lnTOA
Vi :

KL I

Lemma 2.3.11

As N(e) = HEl } ) In % (1 H) the total cost is:

[epi n st +2] - [1+ /£ - m2n)

(2.3.26)
+\/§~ In G . lglle%)rin{j},(xo) — to; fi(IQ)}> .
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