

Evolutionary Clustering

- Processing time stamped data to produce a sequence of clustering.
- Each clustering should be similar to the history, while accurate to reflect corresponding data.
- Trade-off between long-term concept drift and short-term variation.

Example I: Blogosphere

Blogosphere

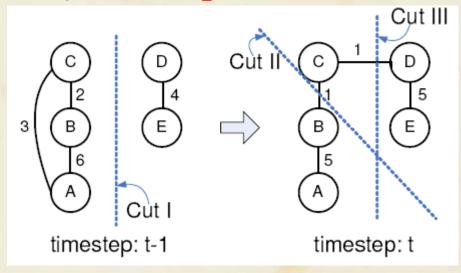
- Community detection
- The overall interest and friendship network is drift slowly.
- Short-term variation is trigged by external event.

Example II

- Moving objects equipped with GPS sensors are to be clustered (for traffic jam prediction or animal migration analysis)
- The object follow certain route in the long-term.
- Its estimated coordinate at a given time may vary due to limitations on bandwidth and sensor accuracy.

The goal

- Current clusters should mainly depend on the current data features.
- Data is expected to change not too quickly. (Temporal Smoothness)



Related Work

- Online document clustering mainly focusing on novelty detection.
- Clustering data streams: scalability and one-pass-access.
- Incremental clustering: efficiently apply dynamic updates.
- Constrained clustering: must link/can-not link.
- Evolutionary Clustering:
 - The similarity among existing data points varies with time.
 - How cluster evolves smoothly.

Basic framework

- Snapshot quality: $sq(C_t, M_t)$
- History cost: hc(C_t, C_{t-1})
- The total quality of a cluster sequence $\sum_{t=1}^{T} \operatorname{sq}(C_t, M_t) \operatorname{cp} \cdot \sum_{t=2}^{T} \operatorname{hc}(C_{t-1}, C_t),$
- We try to find an optimal cluster sequence greedily without knowing the future.
- Each step, find a cluster that maximize

$$\operatorname{sq}(C_t, M_t) - \operatorname{cp} \cdot \operatorname{hc}(C_{t-1}, C_t).$$

Construct the similarity matrix

- Local Information Similarity $\mathcal{R}(t) = (1 \beta) \cdot \mathcal{B}(t)\mathcal{B}'(t) + \beta \cdot \mathcal{R}(t 1), \quad \text{for } t > 0$
- Temporal Similarity

$$Corr(i, j, t_0) = \frac{\sum_{t=1}^{t_0} (x_{i,t} - \mu(i,t))(x_{j,t} - \mu(j,t))}{\sqrt{Var(i,t) \cdot Var(j,t)}},$$

Total Similarity

$$M_t(i,j) = \alpha \cdot S_t(i,j) + (1-\alpha) \cdot \operatorname{Corr}(i,j,t),$$

Instantiations I: K-means • Snapshot quality: $sq(C, M) = \sum_{x \in U} (1 - \min_{c \in C} ||c - x||)$.

- History cost: $hc(C, C') = \min_{f:[k] \to [k]} ||c_i c'_{f(i)}||,$
- In each k-means iteration, the new centroid between the centroid suggested by non-evolutionary k-means and its closest match from previous time step.

where

$$c_j^t \leftarrow (1 - \gamma) \cdot \operatorname{cp} \quad c_{f(j)}^{t-1} + \gamma \cdot (1 - \operatorname{cp}) \quad \underset{x \in \operatorname{closest}(j)}{\operatorname{E}} (x).$$

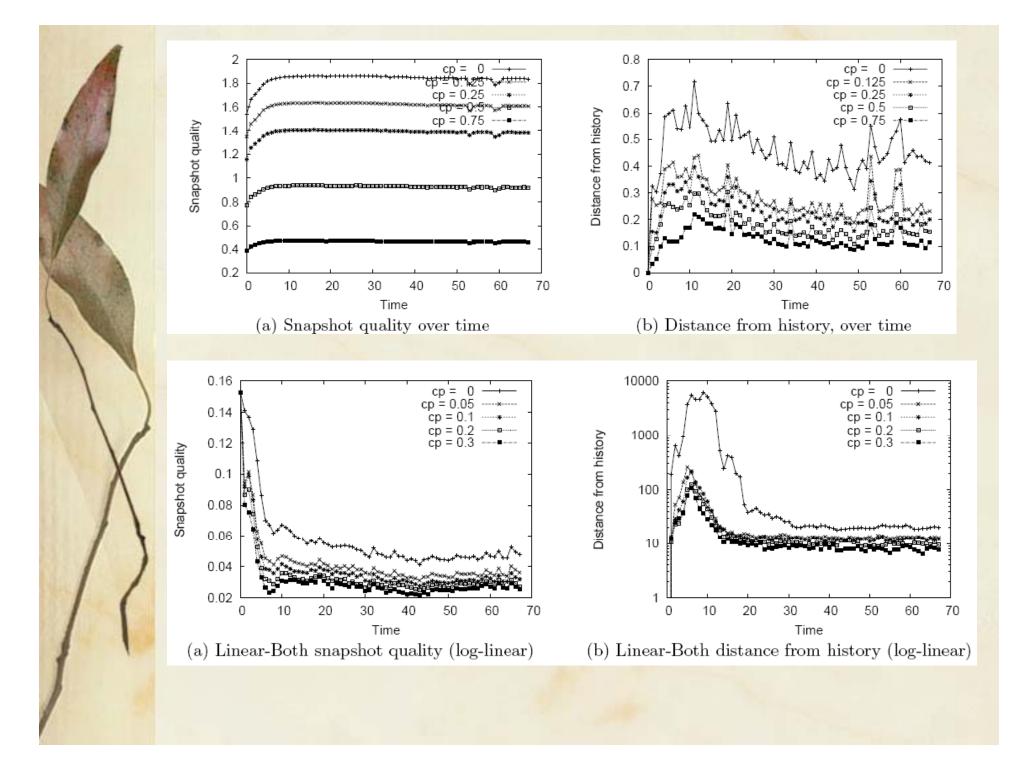
$$\gamma = n_j^t / \left(n_j^t + n_{f(j)}^{t-1} \right)$$

Agglomerative Clustering

- This is more complicated: need to find out the cluster similarity between two trees (T, T').
- Snapshot quality: the sum of the qualities of all merges performed to create T.
- History cost: $hc(T',T) = \mathop{\mathbf{E}}_{\substack{i,j \in \operatorname{leaf}(T') \\ i \neq j}} (d_{T',T}(i,j)).$
- 4 greedy heuristics (skipped here):
 - Squared: $sim_M(m) \left(cp \cdot \mathop{\mathbb{E}}_{\substack{i \in loaf(m_\ell) \\ j \in loaf(m_r)}} (d_{T',T}(i,j)) \right).$

Experiment Setup

- Data: photo-tag pairs from flickr.com
- Task: Cluster tags
- Two tags are similar if they both occur at the same photo
- However, the experiments in the paper doesn't make much sense for me



Comments

- Pros:
 - New problem
 - Effective heuristics
 - Temporal smoothness is incorporated in both the affinity matrix and the history cost.
- Cons
 - No global solution.
 - Can not handle the change of number of clusters.
 - Experiment seems unreasonable.

Evolutionary Spectral Clustering

- Idea is almost the same, but here focus on spectral clustering, which preserves nice properties (global solution to a relaxed cut problem, connections to kmeans).
- But the idea is presented clearer here.

$$Cost = \alpha \cdot CS + \beta \cdot CT$$

- How to measure the temporal smoothness?
 - Measure the cluster quality on past data
 - Compare the cluster membership

Spectral Clustering (1)

• K-way average association:
$$AA = \sum_{l=1}^{k} \frac{assoc(\mathcal{V}_l, \mathcal{V}_l)}{|\mathcal{V}_l|}$$

Negated Average Association:

$$NA = Tr(W) - AA = Tr(W) - \sum_{l=1}^{k} \frac{assoc(V_l, V_l)}{|V_l|}$$

Normalized Cut:

$$NC = \sum_{l=1}^{k} \frac{assoc(\mathcal{V}_{l}, \mathcal{V} \setminus \mathcal{V}_{l})}{assoc(\mathcal{V}_{l}, \mathcal{V})}$$

The basic objective is to minimize the normalized cut or negated average association.

Spectral Clustering (2)

- Typical Procedures
 - Compute eigenvectors X of some variations of the similarity matrix
 - Project all data points into span(X)
 - Applying k-means algorithm to the projected data points to obtain the clustering result.

K-means Clustering

• Find a partition {v1,v2, ..., vk} to minimize the following:

$$KM = \sum_{l=1}^{k} \sum_{i \in \mathcal{V}_l} \|\vec{v}_i - \vec{\mu}_l\|^2$$

Preserving Cluster Quality

K-means

$$\begin{split} Cost_{KM} &= \alpha \cdot CS_{KM} + \beta \cdot CT_{KM} \\ &= \alpha \cdot KM_t \big|_{Z_t} + \beta \cdot KM_{t-1} \big|_{Z_t} \\ &= \alpha \cdot \sum_{l=1}^k \sum_{i \in \mathcal{V}_{l,t}} \|\vec{v}_{i,t} - \vec{\mu}_{l,t}\|^2 \end{split}$$
 Check whether current cluster fits previous cluster.
$$+ \beta \cdot \sum_{l=1}^k \sum_{i \in \mathcal{V}_{l,t}} \|\vec{v}_{i,t-1} - \vec{\mu}_{l,t-1}\|^2$$

• A hidden problem, still needs to find the cluster mapping.

Negated Average Association(1)

• Similar to K-means strategy:

$$Cost_{NA} = \alpha \cdot CS_{NA} + \beta \cdot CT_{NA}$$
$$= \alpha \cdot NA_t \big|_{Z_t} + \beta \cdot NA_{t-1} \big|_{Z_t}$$

• As we know, $NA = Tr(W) - Tr(\tilde{Z}^T W \tilde{Z})$ where $Z^T Z = I_{k.,}$

$$Cost_{NA} = \alpha \cdot \left[Tr(W_t) - Tr(\tilde{Z}_t^T W_t \tilde{Z}_t) \right]$$

$$+ \beta \cdot \left[Tr(W_{t-1}) - Tr(\tilde{Z}_t^T W_{t-1} \tilde{Z}_t) \right]$$

$$= \left[Tr(\alpha W_t + \beta W_{t-1}) - Tr\left[\tilde{Z}_t^T (\alpha W_t + \beta W_{t-1}) \tilde{Z}_t \right] \right]$$

$$(9)$$

So we just need to maximize the 2nd term.

Negated Average Association(2)

- The solution to $Tr\left[\tilde{Z}_t^T(\alpha W_t + \beta W_{t-1})\tilde{Z}_t\right]$ are actually the largest k eigenvectors of the matrix.
- Notice that the solution is optimal in terms of a relaxed problem.
- Connection to k-means.
- It is shown that k-means can be reformulated as

$$KM = Tr(A^{T}A) - Tr(\tilde{Z}^{T}A^{T}A\tilde{Z})$$

So k-means is actually a special case of negated average association with a specific similarity definition.

Normalized Cut

Normalized cut can be represented as

$$NC = k - Tr\left[Y^T \left(D^{-\frac{1}{2}}WD^{-\frac{1}{2}}\right)Y\right]$$

with certain constraints.

• Since $Cost_{NC} = \alpha \cdot CS_{NC} + \beta \cdot CT_{NC}$ = $\alpha \cdot NC_t \Big|_{Z_t} + \beta \cdot NC_{t-1} \Big|_{Z_t}$

• We have

 $Cost_{NC} \approx \alpha \cdot k - \alpha \cdot Tr \left[X_t^T \left(D_t^{-\frac{1}{2}} W_t D_t^{-\frac{1}{2}} \right) X_t \right]$ $+ \beta \cdot k - \beta \cdot Tr \left[X_t^T \left(D_{t-1}^{-\frac{1}{2}} W_{t-1} D_{t-1}^{-\frac{1}{2}} \right) X_t \right]$ $= k - Tr \left[X_t^T \left(\alpha D_t^{-\frac{1}{2}} W_t D_t^{-\frac{1}{2}} + \beta D_{t-1}^{-\frac{1}{2}} W_{t-1} D_{t-1}^{-\frac{1}{2}} \right) X_t \right]$

Again a trace maximization problem.

Discussion on PCQ framework

- Very intuitive
- The historic similarity matrix is scaled and combined with current similarity matrix.

Preserving Cluster Membership

- Temporal cost is measured as the difference between current partition and historical partition.
- Use chi-square statistics to represent the distance:

$$\chi^{2}(Z_{t}, Z_{t-1}) = n \left(\sum_{i=1}^{k} \sum_{j=1}^{k} \frac{|\mathcal{V}_{ij}|^{2}}{|\mathcal{V}_{i,t}| \cdot |\mathcal{V}_{j,t-1}|} - 1 \right)$$

So for K-means

$$Cost_{KM} = \alpha \cdot CS_{KM} + \beta \cdot CT_{KM}$$

$$= \alpha \cdot \sum_{l=1}^{k} \sum_{i \in \mathcal{V}_{l,t}} \|\vec{v}_{i,t} - \vec{\mu}_{l,t}\|^{2} - \beta \cdot \sum_{i=1}^{k} \sum_{j=1}^{k} \frac{|\mathcal{V}_{i,j}|^{2}}{|\mathcal{V}_{i,t}| \cdot |\mathcal{V}_{j,t-1}|}$$
(15)

Negated Average Association(1)

• Distance: $dist(X_t, X_{t-1}) = \frac{1}{2} ||X_t X_t^T - X_{t-1} X_{t-1}^T||^2$

· So

$$Cost_{NA} = \alpha \cdot CS_{NA} + \beta \cdot CT_{NA}$$

$$= \alpha \cdot \left[Tr(W_t) - Tr(X_t^T W_t X_t) \right] + \frac{\beta}{2} \cdot \|X_t X_t^T - X_{t-1} X_{t-1}^T\|^2$$

$$= \alpha \cdot \left[Tr(W_t) - Tr(X_t^T W_t X_t) \right] +$$

$$\frac{\beta}{2} Tr\left(X_t X_t^T - X_{t-1} X_{t-1}^T \right)^T \left(X_t X_t^T - X_{t-1} X_{t-1}^T \right)$$

$$= \alpha \cdot \left[Tr(W_t) - Tr(X_t^T W_t X_t) \right] +$$

$$\frac{\beta}{2} Tr(X_t X_t^T X_t X_t^T - 2X_t X_t^T X_{t-1} X_{t-1}^T + X_{t-1} X_{t-1}^T X_{t-1} X_{t-1}^T \right)$$

$$= \alpha \cdot \left[Tr(W_t) - Tr(X_t^T W_t X_t) \right] + \beta k - \beta Tr\left(X_t^T X_{t-1} X_{t-1}^T X_t \right)$$

$$= \alpha \cdot Tr(W_t) + \beta \cdot k - Tr\left[X_t^T (\alpha W_t + \beta X_{t-1} X_{t-1}^T) X_t \right]$$

Negated Average Association(2)

• It can be shown that the unrelaxed partition:

$$\frac{1}{2} \|\tilde{Z}_t \tilde{Z}_t^T - \tilde{Z}_{t-1} \tilde{Z}_{t-1}^T\|^2 = k - \sum_{i=1}^k \sum_{j=1}^k \frac{|\mathcal{V}_{ij}|^2}{|\mathcal{V}_{i,t}| \cdot |\mathcal{V}_{j,t-1}|}$$
(18)

 So negated average association can be applied to solve the original evolutionary k-means

Normalized Cut

Straight forward

$$Cost_{NC} = \alpha \cdot CS_{NC} + \beta \cdot CT_{NC}$$

$$= \alpha \cdot k - \alpha \cdot Tr \left[X_t^T \left(D_t^{-\frac{1}{2}} W_t D_t^{-\frac{1}{2}} \right) X_t \right]$$

$$+ \frac{\beta}{2} \cdot ||X_t X_t^T - X_{t-1} X_{t-1}^T||^2$$

$$= k - Tr \left[X_t^T \left(\alpha D_t^{-\frac{1}{2}} W_t D_t^{-\frac{1}{2}} + \beta X_{t-1} X_{t-1}^T \right) X_t \right]$$

Comparing PQC & PCM

- As for the temporal cost,
 - In PCQ, we need to maximize $Tr(X_t^T W_{t-1} X_t)$
 - In PCM, we need to maximize $Tr(X_t^T X_{t-1} X_{t-1}^T X_t)$
- Connection:

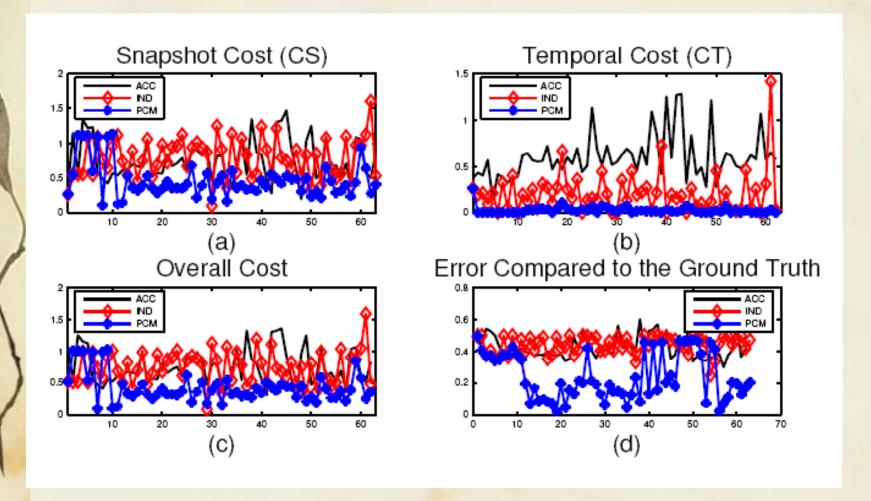
$$X_t^T W_{t-1} X_t = X_t^T (X_{t-1}, X_{t-1}^{\perp}) \Lambda_{t-1} (X_{t-1}, X_{t-1}^{\perp})^T X_t$$

• In PCQ, all the eigen vectors are considered and penalized according to the eigen values.

Real Blog Data

- 407 blogs during 63 consecutive weeks.
- 148,681 links.
- Two communities (ground truth, labeled manually based on contents)
- Affinity matrix is constructed based on links

Experiment Result



Comments

- Nice formulation which has a global solution for the relaxed version.
- Strong connection between k-means and negated average association.
- Can handle new objects or change of number of clusters.

