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A topic taxonomy is an effective representation that describes salient features of virtual groups
or online communities. A topic taxonomy consists of topic nodes. Each internal node is defined by
its vertical path (i.e., ancestor and child nodes) and its horizonal list of attributes (or terms). In a
text-dominant environment, a topic taxonomy can be used to flexibly describe a group’s interests
with varying granularity. However, the stagnant nature of a taxonomy may fail to timely capture
the dynamic change of a group’s interest. This article addresses the problem of how to adapt a
topic taxonomy to the accumulated data that reflects the change of a group’s interest to achieve
dynamic group profiling. We first discuss the issues related to topic taxonomy. We next formulate
taxonomy adaptation as an optimization problem to find the taxonomy that best fits the data. We
then present a viable algorithm that can efficiently accomplish taxonomy adaptation. We conduct
extensive experiments to evaluate our approach’s efficacy for group profiling, compare the approach
with some alternatives, and study its performance for dynamic group profiling. While pointing out
various applications of taxonomy adaption, we suggest some future work that can take advantage
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1. INTRODUCTION

With the prolific and expanded use of the Internet and increasing success of the
concept of Web 2.0 (e.g., flickr, del.icio.us, youtube, myspace, digg, and facebook),
virtual communities and online interactions have become a vital part of human
experience. Members of virtual communities1 tend to share similar interests or
topics. For example, there can be two groups browsing news at some website
such as digg.com: One is interested in topics related to Meteorology, while the
other in politics; a blogger (e.g., the owner of http://hunch.net/) who publishes
blog posts actively on “machine learning” often has links on his/her blogsite
to other bloggers who concentrate on “machine learning” as well. It would be
interesting to find these like-minded individuals for developing many promising
applications, including alert systems, direct marketing, group tracking, etc.
One way is to profile a group, then search for additional groups that match the
profile.

As group interest might change over time, a static group profile cannot keep
pace with an evolving environment. In this work, we aim to address the issue of
dynamic online group profiling in a text-dominant environment. In particular,
we investigate two key issues: (1) how to describe a group—we study how to
sensibly represent a group and what comprises a group profile; and (2) how to
track changes of group interests—evolving group interests present challenges
to group profiling to keep up with the changes. We elaborate a viable approach
that takes into account the aforementioned two issues in regards to dynamic
profiling.

In a text-dominant environment, having a set of topics is a sensible way of
describing the interest of a group. Police might want to track a coterie with in-
terest in topics related to “dirty bombs”, “massive destruction”, or “sabotage” to
thwart crimes before they occur; a company might want to find different groups
who are interested in its products (e.g., brands, functionality, or price ranges);
an organization might just be interested in the opinions of various groups on
major policies (e.g., “boosting the US force presence in Iraq”) and critical deci-
sions (e.g., GM’s voluntary departure packages). Since a group consists of people

1In this work, group and community are used interchangeably.
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Fig. 1. “Hurricane” example.

with shared interests, one intuitive way of describing a group is to clip a group
with some topics shared by most of the members in the group. A refined way is to
associate each topic with keywords (features). These keywords can be supplied
by human beings, or extracted using some feature selection methods [Forman
2003; Liu and Yu 2005].

However, the topics associated with different communities can be inordinate,
and the number of relevant features to distinguish between topics can be huge.
For example, the Yahoo! directory used in Liu et al. [2005] has 292,216 cate-
gories (one category is a topic). Facing a large number of topics, we need to find
a more suitable representation. Organizing the topics into a tree-structured2

taxonomy or hierarchy is an alternative, as it provides more contextual in-
formation with refined granularity compared with a flat list. The left tree in
Figure 1 shows one simple example of a topic taxonomy. Basically, each group
is associated with a list of topics. Each topic can be either a nonleaf (internal)
node like meteorology or politics, or a leaf node like hurricane. Different groups
can have shared topics.

A topic taxonomy is often provided by human beings based on topic semantics
or abridged from a very large taxonomy like the Yahoo! or Google directories. It
is a relatively stable description. However, group interests develop and change.
Let us look at an example about “hurricane”. As shown in Figure 1, in a conven-
tional topic taxonomy, the category hurricane is likely under meteorology, and
not related to politics. Suppose we have two groups: One is interested in mete-
orology and the other in politics. The two groups have their own interests. One
would not expect that “hurricane” is one of the key topics under politics. How-
ever, in a period of time in 2005, there was a surge of documents/discussions
on “hurricane” under politics. Before we delve into why this happened, this
example suggests a change of group interests and the need for corresponding
change of the taxonomy. A good number of documents in category hurricane are
more about politics because hurricanes Katrina and Rita in the United States
in 2005 caused unprecedented damages to life and properties; and some of the
damages might be due to the responsibility and faults of FEMA3 in preparation
for and responding to the disasters.

This example demonstrates some inconsistency between a stagnant taxon-
omy and the changing interests of an online group. Group interests might shift

2This structure allows one node to be the child of multiple parent nodes.
3Federal Emergency Management Agency.
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Fig. 2. Topic taxonomy adaptation process.

and the semantics of a topic could be changed due to a recent event. To enable
a topic taxonomy to profile the changing group interest, we need to allow the
topic taxonomy to adapt accordingly and reflect the change, which necessitates
the need for dynamic group profiling. The dynamic changes of semantics are
reflected in documents under each category, just like in the hurricane example.
This observation motivates us to adjust a given topic taxonomy in data-driven
fashion. Figure 2 illustrates a typical process of topic taxonomy adaption. By
observing the difference between the original taxonomy and the newly gener-
ated one, we notice that topics can emerge and disappear for various groups.
Given recent data (e.g., blog posts, visited webpages, submitted search queries)
and a given topic taxonomy, we aim to automatically find a revised taxonomy
that is consistent with the data and captures dynamic group interests.

In this article, we systematically study the effect of taxonomy on dynamic
group profiling, including efficacy and efficiency. We first discuss the impact
of topic taxonomies on group profiling in Section 2; formulate the taxonomy
adaptation problem in Section 3; discuss the challenges in addressing the prob-
lem and introduce two approaches to perform taxonomy adaptation, Greedy
and TopDown, in Section 4; present the experimental results and further study
and analysis in Section 5. We review existing literature related to group profil-
ing and taxonomy adaptation in Section 6; and discuss some future work and
potential applications of our method in Section 7.

2. TOPIC TAXONOMIES IN GROUP PROFILING

A topic taxonomy is a concise representation for group profiles. Using a struc-
tural hierarchy4 of topics to describe groups exhibits several merits, as next
detailed

(1) Fewer Terms for Representing a Topic. Each node in the topic taxonomy has
a smaller number of subcategories, rather than a flat list of all topics. These

4Hierarchy and taxonomy are used interchangeably henceforth.
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subcategories can be differentiated by a small set of features. The sets of
reduced features shed light to utilize more complex models for profiling,
without encountering many of the standard computational and robustness
difficulties [Koller and Sahami 1997] in the context of classification. The
literature also confirms that hierarchical models (which utilize the struc-
ture of the taxonomy) often outperform flat models (which perform classifi-
cation without taxonomy) in training efficiency, classification efficiency, and
accuracy [Koller and Sahami 1997; McCallum et al. 1998; Ruiz and Srini-
vasan 1999; Dumais and Chen 2000; Cai and Hofmann 2004; Yang et al.
2003; Liu et al. 2005].

(2) Concise Representations of Adjustable Granularity. Some groups might be
interested in “sports”, while some other groups might be interested in more
specific topics such as “football”, “basketball”, or “baseball”. Using a flat
representation would mix up all these topics, since they are overlapped
with “sports”. Taxonomies, on the other hand, can flexibly provide topics
with varied granularity to serve different needs of various groups.

(3) Rich Contextual Information. Within a taxonomy, each topic is an internal
or leaf node in a path originating from the root node. This path suggests
the context of a topic, providing more detailed information than a flat list of
topics. Each node is further described by a set of features (terms) providing
additional semantic information. Given a topic taxonomy, it is easy to find
related or similar topics via parent, sibling, and child nodes. Taxonomies
also facilitate visualization of the relationships between different groups
and detection of related or similar groups.

The core problem now is how to find a good taxonomy, which means that
it can accurately represent a group profile. Several ways can be exploited to
find the profile for each group. Given some labeled training data, for example,
a classifier can be constructed. This training data can either be provided by
human experts or derived from the tags associated with data gleaned from the
web, if such information is available. With a robust classifier built from the
available data, new documents can be labeled automatically by the classifier.
Therefore, the corresponding classification performance provides one effective
way of indirectly measuring how good a topic taxonomy is in group profiling. In
other words, the quality of a topic taxonomy now boils down to the classification
performance (e.g., recall, precision, ROC, etc.) based on the taxonomy.

A good taxonomy can be obtained via different methods:

(1) extracted from a general grand taxonomy like Yahoo! or Google directory;
(2) provided by human experts; or
(3) generated via hierarchical clustering on topics.

The taxonomy provided by the aforesaid methods is relatively stable, and
cannot scale up to capture the dynamic change of group interests.

Given the dynamic group profiling problem, we notice the following chal-
lenges that should be addressed in search of a suitable method to find a good
taxonomy.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 4, Article 15, Pub. date: January 2008.
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—Dynamic. The method must adaptively find a topic taxonomy to reflect dy-
namic change in the data.

—Accurate. The obtained taxonomy must provide an accurate profile for each
group. Since each group is profiled using topics and keywords associated
with each topic, precise profiling necessitates accurate hierarchical document
classification.

—Efficient. The method proposed must be efficient in adapting a taxonomy to
keep pace with the prolific growth of online documents. The method should
scale well to handle large numbers of documents as well as topics.

—Automatic. It is desirable for the method to minimize human involvement in
this process, achieving efficiency and efficacy.

Clearly, methods 1–3 cannot serve the need outlined before. We propose topic
taxonomy adaptation in this work to attain a good taxonomy. In practice, a
semantics-based taxonomy can be provided as a seed through methods 1 or 2.
The provided taxonomy can be considered as a form of prior knowledge and con-
tains valuable information. With this prior knowledge, we can narrow down the
hypothesis space and efficiently find reliable hierarchies with good classifica-
tion performance and generalizability. Instead of “starting-from-scratch” as in
method 3, we propose to modify a given taxonomy gradually and to generate a
data-driven taxonomy so as to achieve classification improvement for accurate
dynamic group profiling.

The topic taxonomy adaptation problem can be rephrased as follows: Given
a taxonomy, find a refined taxonomy such that an accurate hierarchical classi-
fication model can be induced for dynamic group profiling.

3. TAXONOMY ADAPTATION

For dynamic group profiling, the basic problem is how to find a refined taxonomy
to effectively capture the characteristics of online groups given a taxonomy. We
assume that leaf-level topics are always there for simplicity. This could be done
by including a large variety of topics. But the topics of internal nodes in a
taxonomy could emerge and disappear as new documents arrive. Before we
formulate our problem, we present several definitions concerning hierarchies,
as follows.

Definition 3.1 (Admissible Hierarchy). Let L = {L1, L2, · · · , Lm} denote
the categories at leaf nodes of a taxonomy H, and C = {C1, C2, · · · , Cn} de-
note the categories of data D. Then H is an admissible hierarchy for D if m = n
and there is a one-to-one mapping between L and C.

Definition 3.2 (Optimal Hierarchy).

Hopt = arg max
H

p(D|H) = arg max
H

log p(D|H),

where H is an admissible hierarchy for the given data D.

In other words, the optimal hierarchy, given a dataset should be the one with
maximum likelihood. The brute-force approach to finding the optimal hierarchy
is to try all the admissible hierarchies and output the optimal. Unfortunately,
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Fig. 3. Elementary operations. H1 is the original hierarchy, and H2, H3, and H4 are obtained by
performing different elementary operations. H2: promote node 6; H3: demote node 3 under node 2;
H4: merge node 3 and node 4.

even for a small set of categories, there could be a huge number of admissible
hierarchies.

Suppose there are n leaf nodes, one approach to construct a taxonomy is to
pick two categories to form a new parent node; then merge this parent node
with a new leaf node to form another new parent node; continue this process
until no leaf nodes are left. Then we end up with a highly unbalanced binary
tree. Clearly, the final taxonomy structure depends on the order of picking
leaf nodes. Hence, we could have O(n × (n − 1) × · · · × 1) = O(n!) different
hierarchies. Note that this is only one strategy to construct a binary tree and
many other admissible binary trees are not considered yet (not to mention
those n-ary trees). Actually, this problem is highly related to the Steiner tree
problem [Hwang and Richards 1992], which is proved to be NP-complete. It
is impractical to try all the possible hierarchies and pick the optimal. A more
effective way should be explored.

The given hierarchy provides valuable information for classification and can
serve as a seed to find the intended optimal hierarchy. In order to change a
hierarchy to another admissible one, we define three elementary operations, as
given next.

—Promote. Roll-up one node to its upper level.
—Demote. Push down one node to its sibling.
—Merge. Merge two sibling nodes to form a supernode.

As shown in Figure 3, H1 is the original hierarchy. H2, H3, and H4 are ob-
tained by promoting node 6 to its upper level, demoting node 3 under its sibling
node 2, and merging nodes 3 and 4, respectively. Node 7 is a newly generated
node (the supernode) after modification. Note that the set of leaf nodes remains
unchanged.

THEOREM 3.3. The elementary operations are complete for hierarchy trans-
formation.

In other words, we can transform one hierarchy H to any other admissible
hierarchy H ′ by using just the aforesaid three operations. The proof is trivial,
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Fig. 4. Hierarchy search space.

as we can transform H to a one-level tree by promoting all the nodes to its
upper level until it reaches the first level. Then, according to the structure of
H ′ , merging and demoting can be applied to construct the hierarchy.

Definition 3.4 (Hierarchy Difference). A hierarchy difference between two
admissible hierarchies H and H ′ consist of the minimum number of elementary
operations to transform H into H ′ . Suppose the minimum number of operations
is k, we denote the difference between H and H ′ as

‖ H ′ − H ‖= k.

Hierarchy difference actually represents the minimum edit distance of two hier-
archies in terms of our defined elementary operations. Given explicit hierarchy
difference, we define the constrained optimal hierarchy next.

Definition 3.5 (Constrained Optimal Hierarchy). Given a hierarchy H0, if
there exists a sequence of admissible hierarchies Q = {H1, H2, . . . , Hn} such
that their conditional probabilities satisfy

P (D|Hi) ≥ P (D|Hi−1)
‖ Hi − Hi−1 ‖= 1 (1 ≤ i ≤ n)

∀H ′ if ‖ H ′ − Hn ‖= 1, P (D|H ′) ≤ P (D|Hn),

then Hn is a constrained optimal hierarchy for H0 and D .

In other words, the constrained optimal hierarchy (COH) is the hierarchy
that is attainable from the original hierarchy, following a list of admissible
hierarchies with a likelihood increase between consecutive ones. When we reach
a COH, we cannot find a neighboring hierarchy with higher likelihood than
itself. By its definition, each COH is a local optimum. If we state our problem
as that of search, then a provided hierarchy is a sensible starting point in
our attempt to reach the optimal hierarchy following a short path. Hence, we
formulate our challenge as follows.

Hierarchy Search Problem. Given data D and a taxonomy H0, find a hierarchy
Hopt such that

Hopt = arg max
H

log p(D|H),

where H is a constrained optimal hierarchy for D and H0.
Put another way, we can consider the hierarchy search problem as search-

ing in the hierarchy space, as in Figure 4. All the hierarchies in the figure
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are admissible for some data, and an arrow from Hi to Hj denotes likelihood
increase if we transform Hi to Hj by just one hierarchy adjustment elemen-
tary operation. If there is no link between two nodes (hierarchies), then one
hierarchy cannot be transformed to the other by just one operation. For the
given hierarchy H0, there are three constrained optimal hierarchies: H13, H24,
and H33. Notice that there are actually two paths leading to H13, and that two
constrained optimal hierarchies (H13 and H24) might share a partial search
path (H0 to H23). As topic changes during group profiling are often not many or
mostly local, the optimal hierarchy is expected to reside within the vicinity of
a given hierarchy. The optimal hierarchy should be one of the constrained opti-
mal hierarchies. As shown in Figure 4, the optimal hierarchy should be chosen
among H13, H24, and H33, as they yield the maximal likelihood.

4. CHALLENGES AND SOLUTIONS

4.1 Challenges

As for the hierarchy search problem, we need to address the following subprob-
lems.

(1) How to compute the likelihood of data, given a hierarchy (P (D|H) in Defi-
nition 3.2)?

(2) While the hierarchy search problem proposes to select the best among the
constrained optimal hierarchies, it is computationally intractable to obtain
all the constrained optimal hierarchies.

(3) How to find promising neighbors of a hierarchy? There could be a huge num-
ber of neighbors by performing only one elementary operation for a specific
hierarchy, especially when the number of nodes in the tree is large. Suppose
the average number of branching factors and the total number of nodes of
the hierarchy are b and n, respectively. For each node, there are three kinds
of operations: promote it to its parent level, merge it with a sibling node,
and demote it to a child of a sibling node. Thus, the total number of neigh-
bors is O((2(b− 1) + 1) × n) = O(2bn). Among all these neighbors, most are
not necessarily better than the current one. It is desirable to identify those
promising neighbors only.

Hence, we propose to obtain an approximate solution by developing some
heuristics. As for the first subproblem, we actually want to use it to compare
two given hierarchies. Since the topic identification performance indirectly in-
dicates the efficacy of our profiling, we approximate it by comparing two hier-
archies’ classification performance estimates. As in most classification tasks,
the class distribution is highly imbalanced: Accuracy would be biased toward
the majority class. Researchers focus on macro-averaged recall (also known as
balanced accuracy) or the F-measure [Yang and Pedersen 1997; Liu et al. 2005],
rather than accuracy. Here, we use them as the indicators of classification per-
formance to measure likelihood change.

Concerning the second problem, we exploit a greedy approach to find the best
constrained hierarchy. In each search step, we always choose the neighboring
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node with largest likelihood improvement. Other variants of search methods
like beam search can also be explored if time and hardware resources permit.
However, we still need to consider the number of neighbors of a hierarchy. Based
on some pathology study in Tang et al. [2006], we can apply certain heuristics
to find those promising neighbors and to remove those nonpromising ones from
further consideration. In this section, we present some heuristics and then
provide algorithms that accustom the given taxonomy according to the data.

4.2 A Greedy Approach

We first give some definitions to facilitate the description of the heuristics.

Definition 4.1 (High Miss/Low Miss). For a node in the hierarchy, if it is
misclassified at the parent level, then this misclassification is called a high
miss. If it is misclassified as its sibling under the same parent node, then it’s a
low miss.

Heuristic 4.2. If the proportion of the high miss of one node is significantly
larger than that of the low miss, that is,

High Miss > Low Miss + ξ,

where ξ is a user-defined parameter, then we lift this node to the upper level.

Basically, if a node is misclassified significantly at parent level, then we’ll
consider lifting it up to obtain better result.

Definition 4.3 (Ambiguity Score). Given two classes A and B, suppose the
percentage of class A classified as class B is PAB, and the percentage of class B
classified as class A is PBA, then the ambiguity score = PAB + PBA.

Heuristic 4.4. We can calculate the ambiguity score for each pair of cate-
gories under the same parent node. For each subtree in the hierarchy, we pick
the sibling pair A and B with the highest ambiguity score. If |PAB − PBA| ≤ γ ,
where γ is a predefined threshold, then we merge A and B to form a supercate-
gory; otherwise, if PAB > PBA +γ , we shift class A as B’s child; if PBA > PAB +γ ,
then we move class B under class A.

Intuitively, the ambiguity score is the overlapping area of two categories.
Hence, it can help identify the most similar two categories. In the heuristic, we
can find the dominant class by comparing PAB and PBA, and then demote one
class as the other class’s subcategory. Otherwise, neither of them dominates the
other and so they are merged to form a supercategory.

Based on these heuristics, the search space of hierarchies is significantly
reduced. We can now use a wrapper model to search for better hierarchies. In
other words, for a given hierarchy, we generate promising neighboring hierar-
chies and evaluate the hierarchy on some data to get its performance statistics.
The hierarchy with the maximum likelihood increase is thus selected. This pro-
cedure repeats until no neighboring hierarchy with likelihood increase can be
found. The Greedy Hierarchy Search algorithm is given in Figure 5.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 4, Article 15, Pub. date: January 2008.



Topic Taxonomy Adaptation for Group Profiling • 15:11

Fig. 5. Greedy Hierarchy Search algorithm.

4.3 A Top-Down Approach

We noticed in our experiments (see Section 5) that the Greedy Hierarchy Search
algorithm, though effective, did plenty of redundant work in each step to search
for neighboring hierarchies. Actually, two neighboring hierarchies would share
most operations to find their neighbors. In other words, if one operation results
in an improvement for the current hierarchy, it’s likely to yield improvement on
a neighboring hierarchy as well. Therefore, it is not necessary to check all the
operations in each step. Instead, we propose to traverse the hierarchy using a
top-down approach and check each node to search for better hierarchies.

As we know, nodes at the upper level affect more in the classification process
and thus should be considered with higher priority. This is equivalent to a
preference to check the shallowest nodes first in search of promising nodes to
expand.

Our top-down approach (TopDown) consists of multiple iterations (see
Figure 6). For each search iteration, we have the following procedures:

1. Identification of the node to check.
2. Identification of promising neighboring hierarchies concerning a node.
3. Identification of the best neighbor.
4. Update of the current best hierarchy.

We discuss each procedure as follows.

4.3.1 Identification of the Node to Check. Clearly, nodes at the upper level
affect more in the classification process and should be considered with higher
priority. Therefore, we maintain a list of nodes in the hierarchy. At each itera-
tion, we pop the node with the shallowest depth and remove it from the list to
avoid future consideration (refer to Figure 7, getNodeToCheck, for details).

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 4, Article 15, Pub. date: January 2008.
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Fig. 6. Top-Down hierarchy search algorithm.

4.3.2 Identification of Promising Neighbors. Since the number of neigh-
bors of one hierarchy could be huge, rather than considering all the nodes in the
tree to generate the hierarchy, we focus on performing operations to one specific
node in the hierarchy. Three elementary operations have different priorities. In
order to sever the wrong parent-child relations, we need to first promote the
node. Thereafter, merging and demoting are employed to adapt the hierarchy
more specifically consistent for hierarchical classification. So we always check
promoting a node first to avoid getting stuck under a wrong parent node. There-
fore, in one iteration, we just check the promising hierarchies by performing
promoting operations. In another iteration, we just check the hierarchies by
performing demoting or merging.

When we perform merging or demoting on one node, it is not necessary for
us to try all possible pairs of nodes under the same parent. We can just focus on
the category which is most similar to the node we currently check. Therefore,
for one node, we just pick the sibling node with the highest ambiguity score
and generate possible good neighbors by merging these two nodes, or by demot-
ing one node to the other. Notice that not all the neighboring hierarchies are
valid. If one leaf node becomes a nonleaf node, it is invalid, as categories are
the leaf nodes in this work. These invalid hierarchies must be removed from
consideration. The detailed procedure generateNeighbors is in Figure 7.
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Fig. 7. Procedure definitions.

4.3.3 Identification of the Best Neighbor. This procedure compares all the
promising neighboring hierarchies and finds the best among them. Given a list
of hierarchies, we just build a hierarchical model based on each hierarchy, and
then evaluate it on the validation data to obtain some classification statistics
(in particular, the macro-averaged recall in our work). The best hierarchy and
corresponding statistics are returned (line 9 in Figure 6).

4.3.4 Update of Current Best Hierarchy. After we obtain the best hierarchy
in the neighbor list, we can compare it with the current best hierarchy. If the
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classification statistic is better than the current one, we replace the current
best hierarchy with the best hierarchy just found and update the list of nodes
to check. Otherwise, the hierarchy remains unchanged, and we continue with
the next node (lines 10–13 in Figure 6).

Each time we change the hierarchy, we have to update the list of nodes to
check (refer to updateNodeList in Figure 7). We actually just push to the list
all the nodes that will be affected by the operation. Suppose N is the node
being checked. If the hierarchy is obtained by promoting, all the children of N ’s
grandparent should be rechecked. We can revisit the cases in Figure 3. In the
figure, H2 is generated by promoting node 6 in H1. If H2 is just a subtree in
a huge taxonomy, then all the other nodes’ classifiers, except the descendants
of node 1, remain unchanged. So we just push all the descendants of node 1
into the list. Similarly, when we perform merging and demoting, we just need
to push all the descendants of N ’s parent to the list. Therefore, as we perform
demoting and merging to node 3 in H1, resulting in H3 and H4, respectively,
only the subtree of node 1 will be affected. All the changes are local and we just
update the nodes that are affected by the modification. Furthermore, as we use a
top-down approach to traverse the tree, whenever there’s a change at one node,
its children will not be affected. This avoids unnecessary checking of nodes.

The detailed algorithm is presented in Figure 6. In summary, the algorithm
basically consists of multiple iterations. In each iteration, we check each node
of the taxonomy in a top-down approach and generate promising hierarchies
(neighbors) according to an operation flag. Since promoting should be performed
first, in Figure 6, we set the flag to false at the initial iteration (line 3). Then
the operation flag is switched to true at the end of one iteration (line 15) so
that in the next iteration, we merge two nodes or demote one node to deepen
the hierarchy. These pairwise iterations will keep going until the performance
improvement on the validation set is lower than the predefined δ.

The major difference of the TopDown and Greedy approaches is efficiency.
As for Greedy, we have to check all possible operations to all nodes, whereas
TopDown considers only one node in each search step while traversing the
possible neighboring hierarchies. The efficiency difference will be reported in
the experiment part of the article.

5. EXPERIMENTS AND ANALYSIS

Since classification performance indicates the efficacy of a taxonomy for group
profiling, here we use classification performance as a quality measure of a topic
taxonomy. We conduct experiments on some real-world datasets to show the ef-
fectiveness of the proposed algorithms. These datasets are provided by an Inter-
net company. One is about the topics of social study (soc) shared by many small
groups; the other focuses on children’s interests (kids). Topics in both datasets
are organized into corresponding taxonomies. Text and meta-information are
extracted from webpages. After removing common stop words, a vector space
model are applied to represent webpages. Table I summarizes the information
about the two datasets. These two datasets contain a large number of cate-
gories and the class distribution is highly imbalanced, as observed in Figure 8.
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Table I. Real-World Data Description

Soc Kids
no. leaf-level topics 69 244
no. nodes in topic taxonomy 83 299
Height of topic taxonomy 4 5
no. instances 5248 15795
no. terms 34003 48115

Therefore, accuracy is not a good evaluation measure, as it is biased toward the
major class [Tang and Liu 2005]. Instead, we use macro-averaged recall and
the F-measure as our evaluation measure.

5.1 Experiment Settings

We perform tenfold cross-validation on both datasets. In each fold, we apply both
the Greedy and TopDown approaches to the training data with a predefined
hierarchy. After we obtain the adjusted hierarchy, we build hierarchical models
based on training data by selecting various numbers of features at each node.
The model is then evaluated on the test data. The average results in terms of
macro-recall and the macro-F-measure are reported.

When we apply our hierarchy-adjusting algorithm to the training data, the
criterion to evaluate the quality of a hierarchy is macro-averaged recall. Here
500 features are selected using information gain [Yang and Pedersen 1997] to
build the hierarchical model. To gain efficiency, the classifier at each node we
exploited is a multiclass, multinomial, naïve Bayes classifier [McCallum and
Nigam 1998]. The data fragmentation problem becomes serious with a large
number of categories. For instance, some categories in soc data have fewer
than 10 instances. Keeping a portion of training data as the validation set
makes the learning unstable and might lose generalization capability. Here, we
set the validation set to the same as the training data to guide the hierarchy
modification. Independent validation sets can be a better option if sufficient
training data is available. The stopping criterion for hierarchy adaptation is
until no classification performance can be improved on the training data.5 By
some empirical pilot study, we set ξ in Heuristic 4.2 to 0 and γ in Heuristic 4.4
to 0.01. Cross-validation can be exploited here to set the parameters.

In order to examine whether a predefined semantics-based taxonomy can
provide useful prior knowledge for search, we also compared with the start-
from-scratch approach: Ignore the predefined taxonomy and do hierarchical
clustering on training data to obtain the taxonomy. We did a preliminary study
to compare a divisive clustering approach in Punera et al. [2005] with an ag-
glomerative clustering algorithm in Chuang and Chien [2004] (discussed in
Section 6.2), and found that the latter (HAC+P) is not comparable to the former
for our application. The difficulty lies at choosing proper critical parameters of
HAC+P, like the dimensionality to calculate the similarity, the amount of max-
imum depth, and the preferred number of clusters of each node. Therefore, we
just use the former clustering approach as the baseline in our experiment.

5The overfitting problem with this setting is studied later.
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Fig. 8. Class distribution.
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Fig. 9. Performance on soc data.

5.2 Performance on Real-World Data

Figures 9 and 10 demonstrate the performance of different methods plus the
standard deviation. The curves of “Clustering” and “Original” denote the per-
formance of the clustering approach and that based on the original hierarchies,
respectively. There is a clear association between performance and the num-
ber of categories. It is reasonable to expect that the recall and F-measure are
not very high, as we have 69 categories in soc and 244 classes in kids. The
semantics-based hierarchy eventuates better hierarchical classification perfor-
mance than the clustering-based hierarchy. This set of results also indicates
that the prior knowledge embedded in a taxonomy is useful in classification.

Comparatively, our algorithms, which start from a given hierarchy, achieve
significant improvement over the original taxonomy on both datasets. This is
more obvious when the number of categories is large, whereas the features being
selected are few. Both TopDown and Greedy approaches are comparable and
can automatically adjust the content taxonomies for more accurate classifiers.
There is no significant difference between the two in terms of classification
performance.
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Fig. 10. Performance on kids data.

An interesting observation in the experimental results is that the differences
in performance of the different hierarchies diminish with the increasing num-
ber of selected features (see Figure 9). When the number of selected features is
small (e.g., 500), a better hierarchy can significantly outperform a worse one.
When the number of features becomes large, performance differences dimin-
ish. In other words, the loss in accuracy in a bad hierarchy could be partially
compensated by selecting more features. This is because the subcategories of a
good hierarchy share many features, but those of a bad one do not. For a good
hierarchy, a small set of features is often sufficient to distinguish one category
from another. When more features are selected, they are either redundant or
irrelevant, causing potential performance deterioration. Since subcategories of
a bad hierarchy do not share many terms, the increasing number of features
can help better represent the parent category. An important implication is that
more features should be selected for a hierarchy with lexically dissimilar sub-
categories than one with lexically similar ones. However, when taxonomy size
is large, changing the taxonomy is more effective for performance improvement
than selecting more features (see Figure 10 and later on, the Google directory
benchmark data shown in Figure 14).

5.3 Greedy versus TopDown Approach

Though no significant classification difference is observed between Greedy and
TopDown approaches, the time complexity of the two differs. For the naïve
Bayes classifier, both the training time and test time are linear in terms of the
number of instances and dimensionality. For each category, we could summarize
the statistics of terms given the category using just one vector. Then, building
a hierarchical model just costs O(cid ), where ci is the number of internal nodes
in the hierarchy, and d is the dimensionality. However, evaluation still costs
O(hnd ), where h is the average height of the hierarchy and n is the number of
instances in the validation data. So the total number of evaluations determines
the computational cost of our algorithms.

Tables II and III present the total number of evaluations for each method.
When the number of nodes in the hierarchy varies from 83 in soc to 299 in kids,
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Table II. Greedy Performance Statistics

Dataset Evaluations Operations Candidates
Soc 616.9 ± 241.9 18.9 ± 6.7 32.3 ± 1.8
Kids 10923.6 ± 2098.9 64.2 ± 13.0 170.3 ± 4.1

Table III. TopDown Performance Statistics

Dataset Evaluations Operations Iterations
Soc 539.8 ± 191.9 48.5 ± 12.6 5.6 ± 1.8
Kids 3343.5 ± 665.1 197.9 ± 26.5 9.7 ± 1.6

that is, an increase of around 4 times, the number of hierarchy evaluations for
the greedy approach multiplies by around 10923.6

616.9 ≈ 18 times. However, for the
TopDown approach, the factor is 3343.5

539.8 ≈ 6 times. This huge difference can also
be derived from the following theoretical analysis.

For the Greedy approach, at each search iteration, the number of hierarchy
neighbors is O(c), where c is the number of nodes in the tree. If we finally
perform p operations, the number of evaluations is O(cp). The time complexity
of Greedy is O(cp · hnd ). Table II shows the average number of evaluations,
operations, and hierarchy candidates of each iteration on soc and kids data. As
the number of nodes in the hierarchy increases, both the operations to reach a
local optimum and to find the average number of candidates rise dramatically,
which is approximately proportional to the number of nodes in the hierarchy.
Hence, the Greedy approach runs approximately O(c2 · hnd ) in time.

For the TopDown approach, Table III exhibits some statistics: the number
of iterations, evaluations, and elementary operations. In contrast to Greedy,
the number of candidates is not presented, as this algorithm generates at most
three candidates in each search step. Let c denote the number of nodes in the
hierarchy, then a node can never be checked more than c times in one iteration.
In the worst case, each time we update the nodes list after checking a new node,
we have to recheck the previous checked nodes. Then, the worst time complexity
for one iteration is O(c2 · hnd ).

However, the preceding bound is loose. As we traverse the taxonomy top-
down and all the hierarchy changes are local, the worst case can seldom happen
on a semantically reasonable hierarchy. In reality, we observe that on average,
a node will be checked no more than twice in 1 iteration. As shown in Table III,
the average number of evaluations of one iteration is 539.8/5.6 = 96.39. The
number of nodes in the original hierarchy is 83, hence, each node will be checked
roughly 96.39/83 .= 1.16 < 2 times. Similarly, on kids data, each node will be
checked roughly 3343.5/(9.7 ∗ 299) .= 1.15 < 2 times in one iteration. Hence,
empirically, the time of one iteration should be roughly O(2chnd ) = O(chnd ).
In practice, the number of iterations is bounded by a small constant I . We show
in Section 5.4 that I = 2 is a good choice for TopDown. Hence, the total time
complexity of our algorithm is O(Ic · hnd ), that is, linear.

5.4 Robustness

In our original TopDown approach, we keep modifying the hierarchy until no
classification improvement can be observed on training data. However, it is
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Fig. 11. Overfitting on soc.

Fig. 12. Overfitting on kids.

unclear whether the final hierarchy might overfit the training data. Thus, we
build hierarchical classification models on the training data based on the hi-
erarchy after each iteration in TopDown and test them on the test data. We
show that the trend in performance on the testing data does not necessarily
improve as the iteration number increases. This is shown in Figures 11 and 12
for the Soc and Kids experiments, respectively. Specifically, soc and kids achieve
the maximum after 2 and 5 iterations, respectively. The largest jump between
consecutive iterations occurs at the first 2 iterations. Then, the performance
stabilizes for both cases.

Based on this observation, we suggest for TopDown to iterate twice to save
computational cost and obtain a robust taxonomy. Notice that the number of it-
erations in TopDown varies depending each fold (as seen in Table III). Figure 13
compares the performance of our algorithm with multiple iterations and with
a mere two iterations. On soc, running our algorithm for just two iterations
results in a more robust hierarchy compared with many iterations. On kids,
we also obtain a hierarchy as good as the one obtained following the original
TopDown algorithm.

Meanwhile, the computational time is reduced sharply. The average number
of evaluations and operations are shown in Table IV. The majority of the hierar-
chy modifications (operations) are done after just two iterations, but the average
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Fig. 13. Multiple vs. two iterations.

Table IV. Efficiency Comparison

Data Iterations Evaluations Operations

soc 2 211.8 ± 18.3 38.5 ± 6.9
Multiple (5.6 ± 1.8) 539.8 ± 191.9 48.5 ± 12.6

kids 2 784.9 ± 28.0 136.3 ± 11.7
Multiple (9.7 ± 1.6) 3343.5 ± 665.1 197.9 ± 26.5

number of evaluations decreases significantly. As argued in the previous sec-
tion, the key issue is that the modifications (operations) are done after just two
iterations, but the average number of evaluations decreases significantly; and
as argued in the previous section, the key issue to the time complexity of our
algorithm is the number of evaluations. By reducing the number of evaluations,
the computational time is significantly reduced.

The time complexity difference between TopDown with 2 iterations and
Greedy is more easily observed when the taxonomy size is large. To verify this,
a partial taxonomy of the Google directory is selected as a benchmark dataset.
We select a partial taxonomy from the category computers, remove those cat-
egories with too few documents, and finally obtain a taxonomy with 978 leaf
nodes (categories), for a total of 1207 nodes (including internal nodes) with
31197 documents.

We applied our proposed two approaches (Greedy and TopDown with only
2 iterations) to the dataset. Unfortunately, the Greedy approach is still
computationally too expensive for such a large dataset to get a final solution.
Thus, instead of letting the Greedy method “run forever”, we interrupted it
when Greedy ran twice the time as TopDown does, and the obtained hierarchy
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Fig. 14. Performance on Google directory.

was then used as the Greedy’s taxonomy. Figure 14 demonstrates the average
result of tenfold cross-validation. Clearly, TopDown with 2 iterations is more
accurate and efficient than Greedy. Note that the number of categories is very
large here (978 classes). Hence, a tiny numerical improvement is indeed sig-
nificant with respect to a large number of categories. This is also indicated by
small standard deviations in the figure.

5.5 Dynamic Change of Taxonomies

In the previous experiments, we have shown that taxonomy adaptation can
help to improve accuracy for topic identification. The content change in new
incoming data is detected by our method so as to adapt the taxonomy to reflect
the change. Since the taxonomy for real-world applications is so large, it is
cumbersome to include for illustration. In addition, the taxonomy evolution
is usually slow, and extensive human efforts are required to verify taxonomy
adaptation due to the changes of very large-scale data. An alternative to verify
taxonomy adaption is to perform a controlled experiment in which we know a
priori the obvious content changes in the data and observe how a taxonomy
adapts to the changing data. This controlled experiment can illustrate clearly
the effect of dynamic changes of taxonomies.

To prepare for the controlled experiment, we crawled 1800 webpages with
8 categories from a publicly available website. The 8 categories are organized
into a semanticallysound hierarchy in Figure 15(b) as the initial taxonomy. The
dataset is split into three folds (folds 1, 2, and 3) to represent the snapshots col-
lected at different time stamps. We then switch the content of class movies with
that of politics in Fold 2. This way, we force the obvious change to happen and
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see whether the taxonomy can adapt to the change. When fold 1 is presented,
the taxonomy of Figure 15(a) is changed to the one in Figure 15(b). Then fold
2 is presented, and as the contents of movies and politics are switched in this
fold, the taxonomy is adapted to that in Figure 15(c). Notice that the positions of
movie, and politics are swapped in the new taxonomy, and the taxonomy adapts
to the change. The classes movies and economics now belong to the same parent
node, indicating the similarity in their contents. Similarly, politics becomes a
sibling node of music, as expected. When fold 3, in which the content is consis-
tent with the category labels as in fold 1, is presented, the taxonomy changes
again to that in Figure 15(d) to reflect the change in data from fold 2 to fold
3. Then movies and music are coupled again, and politics and economics are
siblings. Clearly, the content changes in data are reflected in the corresponding
taxonomies. We notice that sports and games are somehow mixed in all three
taxonomies. This could be attributed to the variance of each data fold.

6. RELATED WORK

Group profiling has been studied extensively in terms of customer relationship
modeling [Bounsaythip and Rinta-Runsala 2001; Adomavicius and Tuzhilin
2001; Shaw et al. 2001; Chen et al. 2005]. In those works, a typical process
is to apply an association-rule algorithm [Agrawal et al. 1993] to mine
interesting patterns from customer transactions. Based on the customer
segmentation (group), some interesting patterns can be found in this group
for future marketing. Our work adopts a different process than that of typical
customer profiling. Focusing on online groups such as Blogosphere or online

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 4, Article 15, Pub. date: January 2008.



Topic Taxonomy Adaptation for Group Profiling • 15:23

Internet surfing activities, we adopt topic taxonomy to profile groups, instead
of potential patterns shared by customer transactions. The data we collect
consists mainly of topics/tags and documents instead of customer information
and transaction records. Our profiles actually act like concise summaries for
individual online groups.

We propose taxonomy adaptation to achieve dynamic group profiling. In this
process, a hierarchical classification model is employed and a better taxon-
omy is attained after adaptation, given a provided taxonomy. Thus, we briefly
survey the work on state-of-the-art hierarchical classification and taxonomy
generation.

6.1 Hierarchical Classification

A topic taxonomy can be used as a base for a divide-and-conquer strategy. A
classifier is built independently at each internal node of the hierarchy, using all
the documents of the subcategories of this category, and a document is labeled
using these classifiers to greedily select subbranches, until we reach a leaf
node or certain constraints are satisfied (e.g., the score should be larger than a
threshold [Dumais and Chen 2000] or the predictions of adjacent levels should
be consistent [Wibowo and Williams 2002]). Feature selection is often performed
at each node before constructing a classifier [Chakrabarti et al. 1998; Liu and
Motoda 2007].

To build the hierarchical model, different base classifiers are employed, in-
cluding association rules [Wang et al. 1999], naive Bayes classifiers [Koller
and Sahami 1997], neural networks [Weigend et al. 1999; Ruiz and Srinivasan
1999], and support vector machines [Dumais and Chen 2000; Sun and Lim
2001; Liu et al. 2005]. As the greedy approach for classification might be too
optimistic, researchers propose to traverse all possible paths from the root to
the leaves. In Dumais and Chen [2000], the authors use a sigmoid function to
map the prediction of a support vector machine at each node to a probability
and then multiply these probabilities along one path. The path with the highest
probability is selected. Another way is to set a threshold at each level and just
take these branches when the corresponding prediction’s score is larger than
the threshold. It is demonstrated that a hierarchical model marginally outper-
forms a flat (nonhierarchical) model. Moreover, these two methods show little
difference. In Koller and Sahami [1997], a greedy approach with naive Bayes
classifiers is exploited and a significant accuracy improvement is observed.

One advantage of the hierarchy-based approach is its efficiency in training
and testing, especially for a very large taxonomy [Yang et al. 2003; Liu et al.
2005]. Hierarchical models make it easy to modify and expand a taxonomy, like
adding one subcategory, deleting one category, or merging several categories
into one. For each modification, it is not necessary to update the classifiers of all
the nodes, since the classifiers are built independently. We just need to update a
small portion of the classifiers. So the hierarchical approach is preferred when
facing a large taxonomy.

Hierarchies can also be used to assign different misclassification costs. Re-
cently, new hierarchical classifications based on margin theory and kernel
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methods have been introduced [Dekel et al. 2004, Cesa-Bianchi et al. 2006a,
2006b, Tsochantaridis et al. 2004, Cai and Hofmann 2004, Rousu et al. 2005].
The main idea behind these methods is to map the document or document-label
features to a high-dimensional space so that a defined margin can be maxi-
mized. Variegated loss functions (misclassification costs) are obtained from the
hierarchy. These loss functions are incorporated into the margin formulation
and then some tricks (variable/constraint selection, maintaining a working set,
incremental conditional gradient ascent) are used for optimization. In Cesa-
Bianchi et al. [2006a], Tsochantaridis et al. [2004], Cai and Hofmann [2004],
and Rousu et al. [2005], the output space is a sequence of categories, rather than
just a label. All possible paths from root to leaves in the hierarchy are considered
during training and the goal is to find an optimal sequence which maximizes the
margin. A concomitant of these methods’ superior performance is their unbear-
able computational cost for training. There are some other methods which use
hierarchies for statistical smoothing and require EM or cross-validation to tune
the parameters [McCallum et al. 1998; Toutanova et al. 2001; Veeramachaneni
et al. 2005].

However, we notice that all the previous works paid little attention to the
quality of the taxonomy, which we need to consider in real-world applications,
especially for dynamic group profiling of which topics might drift. This partly
motivates us to propose our methods for taxonomy adaptation.

6.2 Taxonomy Generation via Clustering

Some researchers propose to generate a taxonomy from data for document man-
agement and classification. However, human beings are sometimes involved to
aid the construction of taxonomies [Zhang et al. 2004; Gates et al. 2005], mak-
ing it rather complicated to evaluate. Here, we concentrate on those methods
constructing taxonomies automatically.

There are two directions for hierarchical clustering: agglomerative and divi-
sive. In Aggarwal et al. [1999], Chuang and Chien [2004], and Li and Zhu [2005],
all employ a hierarchical agglomerative clustering (HAC) approach. In Aggar-
wal et al. [1999], the centroids of each class are used as the initial seeds and
then a projected clustering method is applied to build the hierarchy. During the
process, the cluster with too few documents is discarded. Thus, the taxonomy
generated by this method might have different categories than those prede-
fined. The authors evaluate their generated taxonomies by some user study
and find it is comparable to the Yahoo directory. In Li and Zhu [2005], a linear
discriminant projection is applied to the data first and then the hierarchical
clustering method UPGMA [Jain and Dubes 1988] is exploited to generate a
dendrogram, which is a binary tree. For classification, the authors change the
dendrogram to a two-level tree according to the cluster coherence, and hierar-
chical models yield classification improvement over flat models. However, it is
not sufficiently justified why a two-level tree should be adopted. Meanwhile,
Chuang and Chien [2004] propose HAC+P, which is similar to the previous
approach. Essentially, it adds one postprocessing step to automatically change
the binary tree obtained from HAC to a wide tree with multiple children.
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Comparatively, the work in Punera et al. [2005] falls into the category of di-
visive hierarchical clustering. The authors generate a taxonomy with each node
associated with a list of the categories. Each leaf node has only one category. This
algorithm basically uses two centroids of the categories which are furthest as
the initial seeds and then it applies spherical K-Means [Dhillon et al. 2001] with
k = 2 to divide the cluster into two subclusters. Each category is assigned to one
subcluster if most of its documents belong to the subcluster (its ratio exceeds a
predefined parameter); otherwise, this category is associated to both subclus-
ters. Another difference between this and other HAC methods is that it will gen-
erate a taxonomy with one category possibly occurring in multiple leaf nodes.

Some practitioners adopt the Bayesian approach to build a topic taxonomy
for text documents. The cluster abstraction model proposed in Hofmann [1999],
associates word distribution conditioned on classes for each node. The author
uses a variance of the EM algorithm to do clustering. Similarly, the probabilistic
abstraction hierarchies presented in Segal et al. [2001] also associate a class-
specific probabilistic model (CPM) to each node and use KL divergence to define
the distance of categories. Then a hierarchy which minimizes overall distance
and maximizes likelihood is presented. In Blei et al. [2003], the nested Chinese
restaurant process is introduced as a prior for hierarchical extension to the
latent Dirichlet allocation model [Blei et al. 2003]. Some recent works [Blei
and Lafferty 2006; Chakrabarti et al. 2006; Airoldi et al. 2006] extend the
clustering method to take into consideration the dynamic change of topics in
evolving data as well, but these mostly focus on a flat list of topics without
taxonomy.

Most clustering approaches justify their taxonomies based on semantics.
Nonetheless, semantically sound taxonomy may not necessarily result in good
classification performance [Tang et al. 2006]. In addition, the update of a taxon-
omy based on clustering is not efficient. The clustering algorithm has to rerun
from scratch each time when new data is collected. Our approach adapts a
taxonomy automatically, thus avoiding unnecessary, repeated work.

7. CONCLUSIONS AND FUTURE WORK

In order to dynamically profile various online groups and communities for other
tasks and potential applications, we propose a topic-taxonomy-based profiling,
as it provides more contextual information with varied granularity yet requires
fewer terms to represent each group. However, a stable taxonomy fails to cap-
ture a group’s interest shift reflected in changing data. Taxonomy adaptation
is proposed to allow a taxonomy to keep up with the evolving data.

We propose two effective data-driven approaches to modify a given taxon-
omy: Greedy and TopDown. Experiments on real-world data show that both al-
gorithms can adapt a hierarchy to achieve improved classification performance.
No significant difference in classification performance is observed between
Greedy and TopDown. However, TopDown with only two iterations avoids
overfitting and outperforms Greedy dramatically in terms of time complex-
ity and scalability. Our experiments also show that taxonomy adaptation can
dynamically capture the content change in evolving data.
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This article is a starting point for dynamic group profiling. Much work re-
mains to be done along this direction. Some lines of immediate future work
include the following.

—In this work, we assume the leaf-level topics in the taxonomy to be constant.
In cases where a brand-new topic appears due to some recent new events, it
would require to combine this work with topic detection and tracking [Allan
2002] to incorporate newly detected topics.

—Combining information epidemics [Gruhl et al. 2004] with our taxonomic
representation can likely provide more useful and comprehensive profiles
for group search and retrieval.

—How to specify a proper pace and time window to update the taxonomy
requires more study for real-world applications. One of the simplest ways is
to update on the per day/week/month basis. A more interesting direction is
to trigger the update automatically based on the content of newly collected
documents.

Our profiles based on topic taxonomy provide a concise summary of varying
granularity for each online group. This kind of information is especially useful
for group identification and group relationship visualization. Our proposed ap-
proach for taxonomy adaptation is particularly applicable for an environment
where the changes are reflected in data; our methods evolve a taxonomy by
learning from the data, as shown in the “hurricane” example. Besides dynamic
group profiling, taxonomy adaptation can also be used for some other potential
applications, including automatic newswire feeder classification where each
user subscribes to multiple topics, personalized email filtering and forward-
ing in which each user maintains a directory to store emails, online bookmark
organization systems where a topic taxonomy is maintained, as well as recom-
mending systems and direct marketing.
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