Relational Learning via Latent Social Dimensions
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Boom of Social Media Heterogeneous Relations in Social Media Baseline Method: Collective Inference/Label Propagation
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Prediction --- Collective inference
«Predict the labels of one node while fixing labels of neighbors
«Iterate until convergence
«Treat connections in a network homogeneously

Empirical Results

Each type of relation is likely to be associated with one affiliation.

Each actor involves in multiple affiliations (e.g., ASU, college, high school)

You([TH) o ASU ' “ This affiliation information in social media is not always available
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Epinionscor Friends Simply taking a homogeneous view of these connections is often insufficient

A Motivating Example Extracting Actor Affiliations
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Problem Formulation
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Given: Prediction Predicted Content: use node content feature alone; Network: use network alone; Both: combine
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*Some actors with identified labels Social
Dimensions 1. Networks in social media are noisy and heterogeneous

Output:

* Training:
«Labels of other actors within the same network

—Extract social dimensions to represent potential affiliations of actors
oApplicable modules: modularity maximization, graph Laplacian, etc.

2. SocDim, capturing potential affiliations of actors, outperforms
other representative methods based on collective inference.

@ @ —Build a classifier to select those discriminative dimensions 3. SocDim converts network-format data into feature format; can
‘\ ‘\ o Applicable modules: SVM, logistic regression, etc. be combined with other node features
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(Input) (Output) —Predict labels based on one actor’s latent social dimensions Ifyou have any questions, p'easegcl"”‘am Lei Tang.
Lhttp://www.public.asu.edu/~Itang!




