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ABSTRACT
Multi-label problems arise in various domains such as multi-
topic document categorization and protein function predic-
tion. One natural way to deal with such problems is to con-
struct a binary classifier for each label, resulting in a set of
independent binary classification problems. Since the multi-
ple labels share the same input space, and the semantics con-
veyed by different labels are usually correlated, it is essential
to exploit the correlation information contained in different
labels. In this paper, we consider a general framework for
extracting shared structures in multi-label classification. In
this framework, a common subspace is assumed to be shared
among multiple labels. We show that the optimal solution
to the proposed formulation can be obtained by solving a
generalized eigenvalue problem, though the problem is non-
convex. For high-dimensional problems, direct computation
of the solution is expensive, and we develop an efficient al-
gorithm for this case. One appealing feature of the proposed
framework is that it includes several well-known algorithms
as special cases, thus elucidating their intrinsic relationships.
We have conducted extensive experiments on eleven multi-
topic web page categorization tasks, and results demonstrate
the effectiveness of the proposed formulation in comparison
with several representative algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining

General Terms
Algorithms

Keywords
Multi-label classification, shared subspace, least squares loss

1. INTRODUCTION
Learning and mining from objects annotated with mul-

tiple labels is a frequently encountered and widely studied
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problem in many domains. For example, in web page cate-
gorization [27, 19, 28], a web page can be assigned to mul-
tiple topics. In gene and protein function prediction [6, 25],
multiple functional labels are associated with each gene and
protein, since an individual gene or protein usually performs
multiple functions. In automated newswire categorization,
multiple labels can be associated with a newswire story in-
dicating its subject categories and the regional categories
of reported events [34]. One common aspect of these prob-
lems is that multiple labels are associated with a single ob-
ject, and they are hence called multi-label problems. Such
problems are more general than the traditional multi-class
problems in which a single label is assigned to an object.
Driven by various applications, such problems are receiving
increasing attention now [22, 16, 8, 33, 12, 18, 30].

One simple and popular approach for multi-label classi-
fication is to construct a binary classifier for each label in
which instances relevant to this label form the positive class,
and the rest form the negative class. This approach has
been applied successfully to various applications [9, 31, 17,
9]. However, it fails to capture the correlation information
among different labels, which is critical for many applica-
tions where the semantics conveyed by different labels are
correlated. Indeed, it has been shown that the decoupling
of multiple labels may compromise the performance signifi-
cantly in certain applications [27]. For example, in modeling
the topics and authorship of documents, it is evident that
the topics and authors of documents are correlated, since a
particular author may only write on certain topics. Hence,
it is essential to model them in a coordinated fashion so that
their intrinsic relationships can be captured.

In this paper, we propose a general framework for extract-
ing shared structures (subspace) in multi-label classification.
In this framework, a binary classifier is constructed for each
label to discriminate this label from the rest of them. How-
ever, unlike the approach that build the binary classifier
independently, a low-dimensional subspace is assumed to be
shared among multiple labels. The predictive functions in
our formulation consist of two parts: the first part is con-
tributed from the representations in the original data space,
and the second one is contributed from the embedding in the
shared subspace. A similar formulation has been proposed
in [3] for multi-task learning. We show that when the least
squares loss is used in classification, the linear transforma-
tion that characterizes the shared subspace can be computed
by solving a generalized eigenvalue problem. In contrast,
the formulation proposed in [3] is non-convex and needs to
be solved iteratively. For high-dimensional problems, direct
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computation of the solution is computationally expensive,
and we develop an efficient algorithm for this case. One
appealing feature of the proposed framework is that it in-
cludes several well-known algorithms as special cases, thus
elucidating their intrinsic relationships. We have conducted
extensive experiments on eleven multi-topic web page cat-
egorization tasks, and results demonstrate the effectiveness
of the proposed formulation. Experimental results also show
that the proposed formulation based on least squares loss is
comparable to other formulations based on hinge loss, while
it is much more efficient.

The key contributions of this paper are highlighted as fol-
lows:

• We propose a general framework for extracting shared
structures in multi-label classification. In this frame-
work, the correlation information among multiple la-
bels is captured by a low-dimensional subspace shared
among all labels.

• We show that when the least squares loss is used in
classification, the shared structure can be computed
by solving a generalized eigenvalue problem. To re-
duce the computational cost, we propose an efficient
algorithm for high-dimensional problems.

• We show that the proposed formulation is a general
one that includes several well-known formulations as
special cases.

• We have conducted extensive experiments on eleven
multi-topic web page categorization tasks to demon-
strate the effectiveness of the proposed formulation.

The rest of this paper is organized as follows: We present
the framework for extracting shared subspace in Section 2.
The efficient algorithm for computing the solution is devel-
oped in Section 3. We discuss its relationship with existing
formulations in Section 4 and report experimental results in
Section 5. Then we conclude and discuss further research in
Section 6.
Notations: We use n, d, and m to denote the number of
training instances, the data dimensionality, and the number
of labels, respectively. The data matrix and the label indi-
cator matrix are denoted as X = [x1, · · · , xn]T ∈ IRn×d and
Y ∈ IRn×m, where xi ∈ IRd is the ith instance, and Yiℓ = 1
if the ith instance has the ℓth label, and −1 otherwise.

2. THE PROPOSED FRAMEWORK
We are given a set of input data {xi}

n
i=1 ∈ R

d and the
class label indicator matrix Y ∈ R

n×m that encodes the la-
bel information, where m and n are the number of labels and
the number of instances, respectively. Following the tradi-
tional supervised learning framework, we learn m functions
{fℓ}

m
ℓ=1 from the data that minimize the following regular-

ized empirical risk:

R({fℓ}
m
ℓ=1) =

m
∑

ℓ=1

(

n
∑

i=1

L(fℓ(xi), y
ℓ
i ) + µΩ(fℓ)

)

, (1)

where yℓ
i = Yiℓ, L is a prescribed loss function, Ω(f) is

a regularization functional measuring the smoothness of f ,
and µ > 0 is the regularization parameter.

2.1 Problem Formulation
We propose a multi-label learning framework, in which a

low-dimensional subspace is shared by all labels. The pre-
dictive functions in this framework consist of two parts: one
part is contributed from the original data space, and the
other part is derived from the shared subspace as follows:

fℓ(x) = wT
ℓ x + vT

ℓ Θx, (2)

where wℓ ∈ R
d and vℓ ∈ R

r are the weight vectors, Θ ∈
R

r×d is the linear transformation used to parameterize the
shared low-dimensional subspace, and r is the dimensional-
ity of the shared subspace. The transformation Θ is common
for all labels, and it has orthonormal rows, that is ΘΘT = I .
In this formulation, the input data are projected onto a low-
dimensional subspace by Θ, and this low-dimensional projec-
tion is combined with the original representation to produce
the final prediction. Note that a similar formulation has
been proposed in [3] to capture the shared predictive struc-
tures in multi-task learning, and our formulation differs with
it in important aspects (see Section 4.1 for a comparison).

Following the regularization formulation in Eq. (1), we
propose to estimate the parameters {wℓ,vℓ}

m
ℓ=1 and Θ by

minimizing the following regularized empirical risk:

m
∑

ℓ=1

(
1

n

n
∑

i=1

L((wℓ +ΘTvℓ)
T xi, y

ℓ
i )+α||wℓ||

2+β||wℓ +ΘT vℓ||
2),

subject to the constraint that ΘΘT = I . Note that in the
above formulation, the first regularization term ||wℓ||

2 con-
trols the amount of information shared by all labels, while
the second regularization term ||wℓ + ΘT vℓ||

2 controls the
complexity of the model. By a change of variable, this prob-
lem can be reformulated equivalently as follows:

min
{uℓ,vℓ},Θ

m
∑

ℓ=1

(

1

n

n
∑

i=1

L(uT
ℓ xi, y

ℓ
i )+α||uℓ − ΘT vℓ||

2+β||uℓ||
2

)

s. t. ΘΘT = I. (3)

In this paper, we consider the least squares loss, i.e.,

L(uT
ℓ xi, y

ℓ
i ) = (uT

ℓ xi − yℓ
i )

2.

It has been shown [11, 24] that the least squares loss func-
tion is comparable to other loss functions such as the hinge
loss employed in support vector machines (SVM) [26] when
appropriate regularization is added. Hence, we get the fol-
lowing optimization problem:

min
{uℓ,vℓ},Θ

m
∑

ℓ=1

(

1

n
‖Xuℓ − yℓ‖

2 + α||uℓ − ΘT vℓ||
2 + β||uℓ||

2

)

s. t. ΘΘT = I, (4)

where X = [x1, · · · , xn]T ∈ R
n×d is the data matrix, yℓ =

[yℓ
1, · · · , yℓ

n]T ∈ R
n. The formulation in Eq. (4) can be ex-

pressed compactly as:

min
U,V,Θ

1

n
‖XU − Y ‖2

F
+ α||U − ΘT V ||2F + β||U ||2F

s. t. ΘΘT = I, (5)

where ‖ ·‖F denotes the Frobenius norm of matrix [13], U =
[u1, · · · , um], and V = [v1, · · · ,vm].
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2.2 The Computation of V ∗

We show that the optimal V ∗ that solves the optimization
problem in Eq. (5) can be expressed in terms of Θ and U ,
as summarized in the following lemma:

Lemma 2.1. Let U , V , and Θ be defined as above. Then
the optimal V ∗ that solves the optimization problem in Eq. (5)
is given by V ∗ = ΘU .

Proof. The only term in Eq. (5) that depends on V is
||U − ΘT V ||2F , which can be expressed equivalently as:

||U − ΘT V ||2F = tr(UT − V T Θ)(U − ΘT V ) (6)

= tr(UT U + V T ΘΘT V − 2UT ΘT V ),

where tr(·) denote the trace of matrix, and we have used the
property that

||A||2F = tr(AT A)

for any matrix A. Taking the derivative of the expression in
Eq. (6) with respect to V , and setting it to zero, we obtain

V ∗ = ΘU,

where we have used the property that ΘΘT = I . This com-
pletes the proof of the lemma.

2.3 The Computation of U∗

It follows from Lemma 2.1 that the objective function in
Eq. (5) can be rewritten as:

1

n
‖XU − Y ‖2

F
+ α||U − ΘT V ||2F + β||U ||2F

=
1

n
‖XU − Y ‖2

F
+ α||U − ΘT ΘU ||2F + β||U ||2F

=
1

n
‖XU − Y ‖2

F
+ tr

(

UT
(

(α + β)I − αΘT Θ
)

U
)

. (7)

Hence, the optimization problem in Eq. (5) can be expressed
equivalently as:

min
U,Θ

1

n
‖XU − Y ‖2

F
+ tr

(

UT
(

(α + β)I − αΘT Θ
)

U
)

s. t. ΘΘT = I. (8)

We show that the optimal U∗ can be expressed in terms of
Θ. This is summarized in the following lemma:

Lemma 2.2. Let X, Y , U , and Θ be defined as above.
Then the optimal U∗ that solves the optimization problem in
Eq. (8) can be expressed as:

U∗ =
1

n

(

M − αΘT Θ
)−1

XT Y, (9)

where M is defined as:

M =
1

n
XT X + (α + β)I. (10)

Proof. Taking the derivative of the objective function in
Eq. (8) with respect to U , and setting it to zero, we obtain

U∗ =
1

n

(

M − αΘT Θ
)−1

XT Y, (11)

where M is defined in Eq. (10).

2.4 The Computation of Θ∗

It follows from Lemma 2.2 that we can substitute the ex-
pression for U∗ in Eq. (9) into Eq. (8) and obtain the fol-
lowing optimization problem with respect to Θ:

max
Θ

1

n2
tr

(

Y T X
(

M − αΘT Θ
)−1

XT Y

)

(12)

s. t. ΘΘT = I.

We show in the following theorem that the optimization
problem in Eq. (12) can be simplified, and the optimal Θ∗

can be obtained by solving a generalized eigenvalue problem.

Theorem 2.1. Let X, Y , and Θ be defined as above.
Then the optimal Θ∗ that solves the optimization problem
in Eq. (12) can be obtained by solving the following trace
maximization problem:

max
Θ

tr

(

(

ΘS1Θ
T
)−1

ΘS2Θ
T

)

(13)

s. t. ΘΘT = I,

where S1 and S2 are defined as:

S1 = I − αM−1, (14)

S2 = M−1XT Y Y T XM−1, (15)

and M is defined in Eq. (10).

Proof. We need the Sherman-Woodbury-Morrison for-
mula [13] for computing matrix inverse:

(P + ST )−1 = P−1 − P−1S
(

I + TP−1S
)−1

TP−1. (16)

It follows from the formula in Eq. (16) that
(

M − αΘT Θ
)−1

= M−1 + αM−1ΘT
(

I − αΘM−1ΘT
)−1

ΘM−1

= M−1 + αM−1ΘT
(

Θ
(

I − αM−1
)

ΘT
)−1

ΘM−1,(17)

where the last equality follows since ΘΘT = I . By substitut-
ing the expression in Eq. (17) into the optimization problem
in Eq. (12), we obtain the following problem:

max
Θ

tr

(

Y T XM−1ΘT
(

Θ
(

I − αM−1
)

ΘT
)−1

ΘM−1XT Y

)

s. t. ΘΘT = I, (18)

where we have omitted the term Y T XM−1XT Y since it is
independent of Θ. By using the property that tr(AB) =
tr(BA) for any two matrices A and B, and noticing the
definitions of S1 and S2 in Eqs. (14) and (15), respectively,
we prove this theorem.

Let Z = [z1, · · · , zr] be the matrix consisting of the top
r eigenvectors corresponding to the largest r nonzero eigen-
values of the generalized eigenvalue problem: S1z = λS2z.
Let Z = ZqZr be the QR decomposition of Z, where Zq has
orthonormal columns and Zr is upper triangular. It is easy
to verify [32] that the objective function in Eq. (13) is invari-
ant of any nonsingular transformation, that is, Q and NQ
achieve the same objective value for any nonsingular matrix
N ∈ IRr×r. It follows that the optimal Q∗ solving Eq. (13)
is given by Q∗ = ZT

q . Note that S1 is positive definite (see
Eq. (20) below), thus Z can also be obtained by computing
the top eigenvectors of S−1

1 S2.
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3. AN EFFICIENT ALGORITHM
From the discussions in the last section, the optimal Θ∗

is given by the eigenvectors of S−1
1 S2 ∈ R

d×d corresponding
to the r largest eigenvalues. When the data dimensionality,
i.e., d, is small, the eigenvectors of S−1

1 S2 can be computed
directly. However, when d is large, direct eigendecomposi-
tion is computationally expensive. In this section, we show
how we can compute the eigenvectors efficiently for this case.

3.1 Reformulation of S−1
1 S2

It follows from the Sherman-Woodbury-Morrison formula
in Eq. (16) that

M−1 =
1

α + β
I −

1

n(α + β)2
XT

(

I +
1

n(α + β)
XXT

)−1

X

=
1

α + β
I −

1

α + β
XT

(

n(α + β)I + XXT
)−1

X. (19)

Hence, we have

I−αM−1 =
β

α + β
I +

α

α + β
XT

(

n(α + β)I + XXT
)−1

X,

(20)
which is positive definite when β > 0.

It follows from the definitions of M , S1, and S2 in Eqs. (10),
(14), and (15) that

S−1
1 S2

=
(

I − αM−1)−1
M−1XT Y Y T XM−1

= (M − αI)−1 XT Y Y T XM−1 (21)

=

(

1

n
XT X + βI

)−1

XT Y Y T X

(

1

n
XT X + (α + β)I

)−1

.

Let

X = UΣV T (22)

be the singular value decomposition (SVD) [13] of X, where
U ∈ IRn×n and V ∈ IRd×d are orthogonal,

Σ = diag(Σt, 0) ∈ IRn×d

is diagonal, and t = rank(X). Let U = [U1, U2], where U1 ∈

IRn×t and U2 ∈ IRn×(n−t), V = [V1, V2], where V1 ∈ IRd×t

and V2 ∈ IRd×(d−t), and Σt consists of the first t rows and
the first t columns of Σ. Then we have

S−1
1 S2

=V1(
1

n
Σ2

t + βI)−1V T
1 XT Y Y T X

(

1

n
XT X + (α + β)I

)−1

+
1

β
V2I

−1V T
2 XT Y Y T X

(

1

n
XT X + (α + β)I

)−1

=V1(
1

n
Σ2

t + βI)−1V T
1 XT Y Y T X

(

1

n
XT X + (α + β)I

)−1

=V1(
1

n
Σ2

t + βI)−1V T
1 XT Y Y T XV1(

1

n
Σ2

t + (α + β)I)−1V T
1

=V1(
1

n
Σ2

t + βI)−1ΣtU
T
1 Y Y T U1Σt(

1

n
Σ2

t + (α + β)I)−1V T
1 .

The second and the third equalities follow since the columns
of V2 are in the null space of X, that is,

XV2 = 0.

3.2 Diagonalization of S−1
1 S2

Define three diagonal matrices D1, D2, and D as follows:

D1 = (
1

n
Σ2

t + βI)−1Σt ∈ R
t×t, (23)

D2 = Σt(
1

n
Σ2

t + (α + β)I)−1 ∈ R
t×t, (24)

D = (D1D
−1
2 )

1

2 ∈ R
t×t. (25)

Then we have

S−1
1 S2 = V1D1U

T
1 Y Y T U1D2V

T
1

= V1D(D−1D1)U
T
1 Y Y T U1(D2D)D−1V T

1

= V1DD̃UT
1 Y Y T U1D̃D−1V T

1 ,

where

D̃ = D−1D1 = D2D. (26)

Denote C = Y T U1D̃ ∈ R
m×t and let

C = P1ΛP T
2 (27)

be the SVD of C where P1 ∈ R
m×m and P2 ∈ R

t×t are
orthogonal, and Λ ∈ R

m×t is diagonal. Then

S−1
1 S2 = V1DP2Λ

T ΛP T
2 D−1V T

1

= V1DP2Λ̃P T
2 D−1V T

1 , (28)

where Λ̃ = ΛT Λ ∈ R
t×t.

3.3 Algorithms for Computing Θ∗ and U∗

It follows from Eq. (28) that the eigenvectors of S−1
1 S2 cor-

responding to nonzero eigenvalues are given by the columns
of V1DP2. The algorithm for computing the optimal Θ∗ for
high-dimensional data is summarized as follows:

• Compute the SVD of X as X = UΣV T = U1ΣtV
T
1 .

• Compute D1, D2, D, and D̃ as in Eqs. (23), (24), (25)
and (26), respectively.

• Compute the SVD of C = Y T U1D̃ as C = P1ΛP T
2 .

• Compute the QR decomposition of V1DP2 as V1DP2 =
QR.

• The rows of the optimal Θ∗ are given by the first r
columns of the matrix Q.

After obtaining Θ∗, we need to compute the optimal U∗

given by Eq. (9). Note that the matrix M ∈ IRd×d is in-
volved in Eq. (9), and hence it is expensive to compute
U∗ directly for high-dimensional data. More specifically, we
need to make use of the expressions in Eqs. (17), (19), and
(20) so that explicit formations of the matrices M and M−1

are avoided.
The SVD of X in the first step takes O(dn2) time assum-

ing d > n. The size of C is m × t where m is the number
of tasks and t = rank(X). Hence the SVD of C in the third
step takes O(tm2) time assuming t > m. The QR decompo-
sition in the fourth step takes O(dt2) time. Typically, m and
t are both small. Thus, the cost of the proposed algorithm
for computing Θ∗ is dominated by the cost for computing
the SVD of X. A summary of relevant matrices and their
associated computational complexity are listed in Table 1.
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Table 1: Summary of relevant matrices. The size,
computation required, and the associated complex-
ity of each relevant matrix are listed.

Matrix Size Computation Complexity

X n × d SVD O(dn2)
C m × t SVD O(tm2)

V1DP2 d × t QR O(dt2)

4. RELATIONSHIP TO EXISTING ALGO-
RITHMS

In this section, we show that the proposed formulation
includes several well-known algorithms as special cases. We
begin by discussing related work.

4.1 Related Work
Dimensionality Reduction Canonical correlation anal-

ysis (CCA) [15] and partial least squares (PLS) [29, 4] are
classical techniques for modeling relations between sets of
observed variables. They both compute low-dimensional
embedding of sets of variables simultaneously. Their main
difference is that CCA maximizes the correlations between
variables in the embedded space, while PLS maximizes their
covariances. One popular use of CCA and PLS is for su-
pervised learning, in which one set of variables are derived
from the data and another set is derived from the class la-
bels. In this setting, the data can be projected onto a lower-
dimensional space directed by the label information. Such
formulation is particularly appealing in the context of di-
mensionality reduction for multi-label data. When applied
to multi-class problems, CCA reduces to the well-known lin-
ear discriminant analysis (LDA) formulation [10] in which a
projection is obtained by maximizing the ratio of inter-class
distance to intra-class distance.

Multi-task Learning In [3], a similar formulation has
been proposed for multi-task learning. In this formulation,
the input data for different tasks can be different, and the
following optimization problem is involved:

min
{uℓ,vℓ},Θ

m
∑

ℓ=1

(

1

nℓ

nℓ
∑

i=1

L
(

uT
ℓ xℓ

i , y
ℓ
i

)

+ α||uℓ − ΘT vℓ||
2

)

s. t. ΘΘT = I, (29)

where xℓ
i is the ith instance in the ℓth task and nℓ is the

number of instances in the ℓth task. It is shown [3] that
the resulting optimization problem is non-convex even for
convex loss functions. Hence, an iterative procedure called
the alternating structure optimization (ASO) algorithm is
proposed to compute a locally optimal solution. A similar
idea of sharing part of the model parameters among multiple
tasks has been explored in the Bayesian framework [5].

Multi-class Learning Formulation for extracting shared
structures in multi-class classification has been proposed re-
cently [1]. In this formulation, a low-rank transformation
is computed to uncover the shared structures in multi-class
classification. The final prediction is solely based on the low-
dimensional representations in the dimensionality-reduced
space. Moreover, the low-rank constraint is non-convex, and
it is first relaxed to the convex trace norm constraint. The
relaxed problem can be formulated as a semidefinite program
which is expensive to solve. Hence, gradient-based optimiza-
tion technique is employed to solve the relaxed problem.

4.2 Connections with Existing Formulations
The formulation proposed in Section 2 includes several

existing algorithm as special cases. In particular, by setting
the regularization parameters α and β in Eq. (5) to different
values, we obtain several well-known algorithms.

• α = 0: When the regularization parameter α = 0, it
can be seen from Eq. (5) that this formulation is equiv-
alent to the classical ridge regression [14]. In ridge
regression, the multiple labels are decoupled, and the
solution to each label can be obtained independently
by solving a system of linear equations. In this case, no
shared information is exploited among different labels.

• β = 0: When the regularization parameter β = 0, only
the task-specific parameters {wℓ}

m
ℓ=1 are regularized.

Thus, the proposed formulation reduces to the one in
[3] in the special case where the input data are the
same for all tasks.

• α = +∞: It can be seen from Eq. (21) that when α
tends to infinity,

(

1

n
XT X + (α + β)I

)−1

→ ǫI,

for some small positive ǫ. Hence, the eigenvectors of
S−1

1 S2 is equivalent to the eigenvectors of the matrix
(

1

n
XT X + βI

)−1

XT Y Y T X. (30)

This formulation is the same as the problem solved
by orthonormalized PLS [4]. When the matrix Y Y T

in Eq. (30) is replaced by Y (Y T Y )−1Y T , this prob-
lem reduces to CCA. In the special case of multi-class
problems, where each data point belongs to one class
only, we define the class indicator matrix Y as follows:
yij =

√

n/nj −
√

nj/n if yi = j, and −
√

nj/n oth-
erwise, where nj is the sample size of the j-th class.
It is easy to verify that 1

n
XT X and XT Y Y T X corre-

spond to the total scatter and inter-class scatter matri-
ces used in LDA. Thus, the optimal Θ coincides with
the optimal transformation computed by LDA.

• β = +∞: When β tends to infinity, the eigenvec-
tors of S−1

1 S2 is given by the eigenvectors of the ma-
trix XT Y Y T X, which is the inter-class scatter matrix
used in LDA. In this case, the proposed formulation
is closely related to the orthogonal centroid method
(OCM) [23] in which the optimal transformation is
given by the eigenvectors of the inter-class scatter ma-
trix corresponding to the largest eigenvalues.

5. EXPERIMENTAL STUDY
In this section, we evaluate the proposed formulation on

multi-topic web page categorization tasks.

5.1 Experimental Setup
The multi-topic web page categorization data sets were

described in [27, 19, 28], and they were compiled from 11
top-level categories in the “yahoo.com” domain. The web
pages collected from each top-level category form a data set.
The top-level categories are further divided into a number
of second-level subcategories, and those subcategories form
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the topics to be categorized in each data set. Note that
the 11 multi-topic categorization problems are compiled and
solved independently as in [27]. We preprocess the data sets
by removing topics with less than 100 web pages, words
occurring less than 5 times, and web pages without topics.
We use the TF-IDF encoding to represent web pages, and
all web pages are normalized to unit length. The statistics
of all data sets are summarized in Table 2.

We use area under the receiver operating characteristic
(ROC) curve, called AUC, and F1 score as the performance
measure. To measure the performance across multiple labels
using F1 score, we use both the macro F1 and the micro F1
scores [21, 31]. The F1 score depends on the threshold values
of the classification models, and the thresholds computed by
models are usually not optimized for it. Indeed, all methods
yield low F1 scores when the thresholds computed by models
are used. It is shown recently [9] that tuning the threshold
based on F1 score on the training data can significantly im-
prove performance. Hence, we tune the threshold value of
each model based on the training data.

5.2 Performance Evaluation
We evaluate the proposed formulation on the 11 multi-

topic web page categorization data sets. The experimental
results on five relevant methods are also reported. Parame-
ters of all the methods are tuned using 5-fold cross-validation
based on F1 score. The setup is summarized as follows:

• MLLS: The proposed multi-label formulation. The
regularization parameters α and β are tuned using
5-fold double cross-validation from the candidate set
[0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1]. The perfor-
mance of the proposed formulation is not sensitive to
the dimensionality of the shared subspace r as long as
it is not too small. Hence, it is fixed to 5×⌊(m−1)/5⌋
in the experiments where m is the number of labels.

• CCA+Ridge: CCA is applied first to reduce the data
dimensionality before ridge regression is applied. The
regularization parameters for CCA and ridge regres-
sion are tuned on the set {10i|i = −6,−5, · · · , 1} and
{10i|i = −6,−5, · · · , 0}, respectively.

• CCA+SVM: CCA is applied first to reduce the data
dimensionality before linear SVM is applied. The reg-
ularization parameter for CCA is tuned on the set
{10i|i = −6,−5, · · · , 1}, and the C value for SVM is
tuned on the set {10i|i = −4,−3, · · · , 4, 5}.

• ASOSVM: The alternating structural optimization
(ASO) algorithm proposed in [3] with hinge loss as
described in Eq. (29). The regularization parameter
α is tuned on the set {10i|i = −4,−3, · · · , 2, 3}. The
tolerance parameter for testing convergence is set to
10−3, and the maximum number of iterations for ASO
is set to 100. The optimization problem involved is
solved using the MOSEK package [2].

• SVM: Linear SVM is applied on each label using the
one-against-rest scheme, and the C value for each SVM
is tuned on the set {10i|i = −5,−4, · · · , 4, 5}.

• SVMC: Linear SVM is applied on each label using
the one-against-rest scheme, and C = 1 for all SVMs.

Table 2: Statistics of the Yahoo data sets. m,
d, and N denote the number of labels, the
data dimensionality, and the total number of in-
stance, respectively, in the data set after prepro-
cessing. “MaxNPI”/“MinNPI” denotes the max-
imum/minimum number of positive instances for
each topic (label).

Data set m d N MaxNPI MinNPI
Arts 19 17973 7441 1838 104
Business 17 16621 9968 8648 110
Computers 23 25259 12371 6559 108
Education 14 20782 11817 3738 127
Entertainment 14 27435 12691 3687 221
Health 14 18430 9109 4703 114
Recreation 18 25095 12797 2534 169
Reference 15 26397 7929 3782 156
Science 22 24002 6345 1548 102
Social 21 32492 11914 5148 104
Society 21 29189 14507 7193 113

The SVM problems are solved using the LIBSVM [7] soft-
ware package. All the codes and data sets used for the ex-
periments are available at the supplemental website1.

We randomly sample 1000 data points from each data set
as training data (each label is guaranteed to appear in at
least one data point), and the remaining data points are
used as test data. This process is repeated five times to gen-
erate five random training/test partitions, and the averaged
performance and standard deviations are reported. Tables
3 and 4 show the performance of the six methods in terms
of AUC, macro F1, and micro F1. We can observe that the
proposed formulation outperforms all other five compared
methods in terms of macro F1 score on all of the 11 data
sets. In terms of AUC, the proposed formulation achieves
the highest AUC on 9 data sets, while SVM-based meth-
ods achieve the highest AUC on the other two data sets. In
terms of micro F1 score, the proposed formulation outper-
forms other methods on 10 data sets. The low performance
of ASOSVM may be due to the early termination of its it-
erative procedure in parameter tuning, since it is computa-
tionally very expensive. In general, tuning the parameter C
in SVM with cross-validation yield a performance improve-
ment of about 1% in most cases. On some of the data sets,
the performance of CCA+SVM and SVM is different. This
may be due to the numerical problems encountered when
solving the eigenvalue problem related to CCA. The perfor-
mance improvement achieved by the proposed formulation
over other compared methods is consistent across data sets
and performance measures.

5.3 Scalability Evaluation
We evaluate the scalability of the proposed multi-label

formulation on the Health and Science data sets which con-
tain the minimum and maximum number of labels among
the 11 data sets. In particular, we increase the number of
training samples on the Health and Science data sets grad-
ually, and record the computation time of MLLS, SVM, and
ASOSVM. The training time for a fixed parameter setting
and the time for parameter tuning using cross-validation are
plotted in Figure 1. We can observe that SVM is the fastest

1http://www.public.asu.edu/~sji03/multilabel/
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Table 3: Summary of performance for the 6 compared methods on the first 6 Yahoo data sets in terms of
AUC (top section), macro F1 (middle section), and micro F1 (bottom section). All parameters of the 6
methods are tuned by cross-validation, and the averaged performance over 5 random sampling of training
instances is reported. The highest performance is highlighted in each case.
Algorithm Arts Business Computer Education Entertainment Health

MLLS 0.7711±0.0040 0.8348±0.0050 0.7964±0.0050 0.7753±0.0071 0.8264±0.0018 0.8483±0.0043
CCA+Ridge 0.7571±0.0045 0.8216±0.0066 0.7932±0.0071 0.7597±0.0099 0.8043±0.0083 0.8477±0.0152
CCA+SVM 0.7519±0.0037 0.8169±0.0072 0.7774±0.0121 0.7581±0.0096 0.7965±0.0101 0.8409±0.0087
ASOSVM 0.7678±0.0037 0.8261±0.0067 0.7847±0.0064 0.7446±0.0095 0.8207±0.0033 0.8621±0.0042
SVMC 0.7674±0.0046 0.8263±0.0058 0.7943±0.0054 0.7685±0.0062 0.8155±0.0040 0.8617±0.0039
SVM 0.7668±0.0045 0.8271±0.0055 0.7940±0.0061 0.7716±0.0067 0.8177±0.0035 0.8634±0.0040

MLLS 0.3583±0.0076 0.3985±0.0052 0.3219±0.0241 0.3864±0.0096 0.4874±0.0121 0.5966±0.0115
CCA+Ridge 0.3190±0.0090 0.3779±0.0114 0.2799±0.0366 0.3602±0.0142 0.4352±0.0160 0.5431±0.0363
CCA+SVM 0.3158±0.0093 0.3758±0.0127 0.3059±0.0304 0.3618±0.0125 0.4409±0.0172 0.5338±0.0343
ASOSVM 0.3568±0.0094 0.3736±0.0120 0.2873±0.0265 0.3262±0.0127 0.4344±0.0154 0.5814±0.0059
SVMC 0.3216±0.0090 0.3533±0.0103 0.2609±0.0292 0.3588±0.0067 0.4260±0.0047 0.5632±0.0059
SVM 0.3382±0.0130 0.3677±0.0070 0.2948±0.0282 0.3830±0.0146 0.4462±0.0103 0.5705±0.0078

MLLS 0.4716±0.0070 0.7645±0.0056 0.5585±0.0097 0.4899±0.0097 0.5901±0.0098 0.6809±0.0078
CCA+Ridge 0.4444±0.0186 0.7508±0.0068 0.5414±0.0051 0.4538±0.0127 0.5506±0.0260 0.6771±0.0053
CCA+SVM 0.4524±0.0075 0.7528±0.0074 0.5394±0.0198 0.4647±0.0166 0.5498±0.0249 0.6804±0.0098
ASOSVM 0.4449±0.0078 0.7384±0.0075 0.4305±0.0219 0.4322±0.0124 0.5605±0.0113 0.6754±0.0076
SVMC 0.4449±0.0024 0.7384±0.0091 0.5275±0.0112 0.4745±0.0045 0.5413±0.0092 0.6714±0.0105
SVM 0.4574±0.0057 0.7584±0.0073 0.5458±0.0131 0.4773±0.0092 0.5701±0.0108 0.6773±0.0051
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Figure 1: Comparison of computation time for MLLS, SVM, and ASOSVM on the Health (left two panels)
and Science (right two panels) data sets. The computation time for a fixed parameter setting and that for
parameter tuning using cross-validation are both depicted for each data set. See the text for more details.

and ASOSVM is the slowest among the three compared algo-
rithms. Moreover, the difference between MLLS and SVM is
small. The computational cost of the proposed formulation
is dominated by the cost of SVD computation on the data
matrix X, and it is independent of the number of labels. In
contrast, the computational costs of SVM and ASOSVM de-
pend on the number of labels. Hence, the difference between
SVM and MLLS tends to be smaller on the Science data set,
since the Science data set has a larger number of labels than
the Health data set (14 and 22 labels, respectively). Note
that in MLLS, the two regularization parameters α and β
are tuned using double cross-validation. However, the SVD
on X needs to be computed only once irrespective of the
size of the candidate sets for α and β. This experiment also
shows that the running time of ASOSVM may fluctuate as
the number of training instances increases. This may be
due to the fact that the convergence rate of the ASOSVM

algorithm depends on the initialization.

5.4 Sensitivity Study
We conduct experiments to evaluate the sensitivity of the

proposed formulation to the values of the regularization pa-

rameters α and β. We randomly sample 1000 data points
from each of the three data sets Arts, Recreation, and Sci-
ence, and the averaged macro F1 scores over 5-fold cross-
validation for different values of α and β are depicted in
Figure 2. We can observe that the highest performance on
all three data sets is achieved at some intermediate values of
α and β. Moreover, this experiments show that the perfor-
mance of the proposed multi-label formulation is sensitive
to the values of the regularization parameters. Note that
the parameter tuning time of the proposed formulation does
not depend on the size of the candidate sets directly, since
the computational cost is dominated by that of the SVD
of X which needs to be performed only once. Hence, large
candidate sets for α and β can be employed in practice.

6. CONCLUSION AND DISCUSSION
We present a framework for extracting shared subspace

in multi-label classification in this paper. In this frame-
work, a subspace is assumed to be shared among multiple
labels, and a linear transformation is computed to discover
this subspace. We show that when the least squares loss is
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Table 4: Summary of performance for the 6 compared methods on the last 5 Yahoo data sets in terms of AUC
(top section), macro F1 (middle section), and micro F1 (bottom section). All parameters of the 6 methods
are tuned by cross-validation, and the averaged performance over 5 random sampling of training instances is
reported. The highest performance is highlighted in each case.

Algorithm Recreation Reference Science Social Society

MLLS 0.8202±0.0064 0.8358±0.0026 0.8332±0.0037 0.8320±0.0038 0.7347±0.0030
CCA+Ridge 0.8106±0.0072 0.8260±0.0109 0.8161±0.0020 0.8189±0.0032 0.7204±0.0060
CCA+SVM 0.7896±0.0119 0.8054±0.0056 0.7946±0.0052 0.7448±0.0077 0.7007±0.0088
ASOSVM 0.8123±0.0054 0.8340±0.0041 0.8073±0.0042 0.7942±0.0092 0.7321±0.0021
SVMC 0.8092±0.0063 0.8345±0.0025 0.8277±0.0015 0.8392±0.0026 0.7308±0.0030
SVM 0.8157±0.0068 0.8327±0.0052 0.8311±0.0012 0.8377±0.0033 0.7340±0.0024

MLLS 0.4519±0.0138 0.4208±0.0078 0.4337±0.0042 0.3680±0.0223 0.3369±0.0164
CCA+Ridge 0.4286±0.0182 0.3330±0.0120 0.3577±0.0074 0.3279±0.0059 0.2961±0.0274
CCA+SVM 0.4331±0.0158 0.3417±0.0139 0.3650±0.0093 0.3126±0.0134 0.2996±0.0146
ASOSVM 0.4136±0.0133 0.4116±0.0102 0.3397±0.0109 0.3017±0.0017 0.3023±0.0132
SVMC 0.3852±0.0233 0.3795±0.0119 0.3770±0.0181 0.3232±0.0160 0.2919±0.0191
SVM 0.4460±0.0084 0.4005±0.0084 0.4093±0.0174 0.3380±0.0190 0.3069±0.0142

MLLS 0.5351±0.0023 0.6020±0.0067 0.5254±0.0040 0.6606±0.0059 0.4874±0.0142
CCA+Ridge 0.5223±0.0069 0.5336±0.0377 0.4704±0.0122 0.6607±0.0045 0.4783±0.0273
CCA+SVM 0.5159±0.0066 0.5448±0.0315 0.4815±0.0036 0.6012±0.0183 0.4690±0.0123
ASOSVM 0.4976±0.0078 0.5580±0.0047 0.4564±0.0128 0.6492±0.0112 0.4639±0.0025
SVMC 0.4797±0.0145 0.5856±0.0053 0.4774±0.0169 0.6500±0.0095 0.4569±0.0108
SVM 0.5284±0.0049 0.6002±0.0064 0.5142±0.0085 0.6573±0.0123 0.4801±0.0127
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Figure 2: The change of macro F1 scores as the regularization parameters α and β vary in the range
[0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100] for the Arts (left panel), Recreation (middle panel), and Science (right
panel) data sets.

used in classification, the optimal solution for the proposed
formulation can be computed via a generalized eigenvalue
problem. For high-dimensional data, direct computation of
this problem is computationally expensive, and we develop
an efficient algorithm for this case. We show that the pro-
posed formulation is a general framework that includes sev-
eral well-known formulations as special cases. Experimental
results on eleven multi-topic web page categorization tasks
show that the proposed formulation outperforms competing
methods in most cases.

Our results show that applying regularization on both
parts of the predictor can potentially improve performance.
We have attempted to compare the proposed formulation
with an extension of the ASO algorithm in which both parts
of the predictor are regularized. However, this extension
of the ASO algorithm is computationally demanding when

both regularization parameters are tuned using double cross-
validation. Hence, we are not able to include its results in
this paper. We will explore ways to improve the efficiency
of this algorithm in the future. The data matrices in many
applications such as the ones used in this paper are sparse.
Hence, techniques for computing the SVD of sparse matrices
as proposed in [20] can be employed to expedite the compu-
tation. We plan to apply such techniques in our algorithm
in the future.
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