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ABSTRACT

A multi-mode network typically consists of multiple hetero-
geneous social actors among which various types of interac-
tions could occur. Identifying communities in a multi-mode
network can help understand the structural properties of the
network, address the data shortage and unbalanced prob-
lems, and assist tasks like targeted marketing and finding in-
fluential actors within or between groups. In general, a net-
work and the membership of groups often evolve gradually.
In a dynamic multi-mode network, both actor membership
and interactions can evolve, which poses a challenging prob-
lem of identifying community evolution. In this work, we try
to address this issue by employing the temporal information
to analyze a multi-mode network. A spectral framework
and its scalability issue are carefully studied. Experiments
on both synthetic data and real-world large scale networks
demonstrate the efficacy of our algorithm and suggest its
generality in solving problems with complex relationships.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Sociology; H.3.3
[Information Search and Retrieval]: Clustering; 1.5.3
[Pattern Recognition]: Clustering

General Terms

Algorithms, Experimentation, Performance

Keywords

Evolution, Multi-mode Network, Community Evolution, Dy-
namic Network Analysis, Dynamic Heterogeneous Network

1. INTRODUCTION

Social network analysis [35] is attracting increasing at-
tention in many fields besides sociology, including epidemi-
ology [20], intelligent analysis [5], targeted marketing and
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Figure 1: Online Marketing

recommendation systems [28], etc. Most existing work con-
centrates on one-mode network. That is, there is only one
type of social actors (nodes) involved in the network and
the ties (interactions) between actors are of the same type.
This is common in a broad sense such as friendship network,
Internet, phone call network, etc. However, some emerging
applications such as web mining, collaborative filtering, and
online targeted marketing involve more than one type of
actors and multiple heterogeneous interactions between dif-
ferent types of actors. Such a network is called multi-mode
network (also known as heterogeneous network) [35].

Take targeted marketing as an example. A three-mode
network can be constructed: users, queries, and online ads,
as shown in Figure 1. Note that in the figure, both queries
and ads are also considered as “social actors”, though the
user is still the major mode under consideration. There
are different interactions among the three types of entities:
Users issue queries when searching for his/her desired prod-
uct; users can click on those ads that seem interesting to
him/her; queries and ads are related to each other naturally
by its semantic meanings. Intuitively, two users submitting
similar queries or browsing related ads might share similar
interest. Queries relating to ads of the same/similar prod-
uct, and submitted by users within a single session are more
likely to be related.

One way for one-mode networks to handle the example
above is to construct a similarity network on user profiles or
queries. Multi-mode network, by employing the relationship
between different types of objects, could shed light for ac-
curate online marketing with limited user information. The
network might become more complicated if there are inter-
actions between members of the same mode (say, friend-
ship networks between users, similarity networks between
queries) or attributes associated with certain objects (like
the product information of the ads).
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Figure 2: Academic Publications

Another example of multi-mode network is academic pub-
lications as shown in Figure 2. Various kinds of related ob-
jects (researchers, conference/journals, papers, words) are
considered. Scientific literature connects papers by cita-
tions; and papers are published at different places (con-
ferences, journals, workshops, thesis, etc.); Meanwhile, re-
searchers are connected to papers through authorship. Some
might also relate to each other by serving simultaneously as
journal editors or the program committees of a conference.
Moreover, each paper can focus on different topics, which are
represented by words. Words are associated to each other
based on semantics. At the same time, papers connect to
different conferences, journals (venues for publication). In
other words, multiple types of objects exist in the same net-
work, and objects relate to others (either the same type
or different types) through different links. Several objects
might have some attributes as well.

Within a multi-mode network, different types of social ac-
tors tend to form groups or communities’. For instance,
users sharing similar interest are more likely to form the
same group; queries are clustered naturally if they are re-
lating to similar products; and ads are clustered if they
aim at the same/similar products. A special case is when
there exists a one-to-one correspondence relationship be-
tween groups of different modes (user-query-ads), and the
actors inside the the group interact with each other fre-
quently. More generally, a user group could interact with
multiple groups of another mode (i.e., users can have mul-
tiple interests, thus relating to various query groups). One
mode network always assumes that the within-group inter-
action are dense and between-group interaction are sparse.
Different from an one-mode network, a community inside a
multi-mode network might have no within-group interaction
yet share similar patterns while interacting with groups of
other modes.

Some work has been done to identify communities in a net-
work of heterogeneous objects or multiple relations [33, 23,
25] in terms of multi-type relational clustering. However,
these methods concentrate on static networks. In reality,
some networks tend to evolve gradually; the communities
inside a network could grow or shrink, and the membership
for specific social actors can shift gradually [8, 19, 4, 21]. Ina
multi-mode network, actors of different modes evolve differ-

!Group and community are interchangeable in this work.
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ently. For instance, in previous academic example, the inter-
actions between different actors change every year. Within
the network, researchers can divert their personal research
interests, and the “hot” topics of a field could also change.
On the contrary, the community of “journals/conferences”
tends to be stable, but two venues could also be connected
due to the topic change. For instance, social network analy-
sis joins researchers from diverse fields recently, thus making
those journals on social science becoming more related to
transactions concentrating on data mining.

Facing heterogeneous actors with dynamic interactions,
discovering the community evolution can benefit in various
aspects: 1) to detect the user interest shift leading to more
effective targeted marketing; 2) to help browse a long his-
tory of network or literature by showing the long-term trend;
3) to detect suspicious financial online activities if the sub-
ject suddenly signals a drastic change in transaction pattern,
etc. However, the problem becomes more challenging in dy-
namic multi-mode networks as the evolution of each mode
becomes correlated.

In this work, we propose a general model to identify com-
munity evolution in dynamic multi-mode networks by adopt-
ing a spectral clustering framework. Essentially, the dy-
namic multi-mode network consists of a series of network
snapshots. We aim to find out how a community evolves. In
this model, the effect of temporal change is adopted as a reg-
ularization term while performing the clustering. It can be
shown that the interactions between two modes, and cluster-
ing result of neighboring time stamps can be considered as
attributes in a sense, which connects dynamic multi-mode
network analysis to classical attribute-based data mining.
An iterative algorithm, which does not suffer from hardware
constraints even with tens of thousands actors, is presented
to find an optimal solution of the model. The experiments
on both synthetic and real-world large scale network data
demonstrate the efficacy of our algorithm and suggest its
generality in solving problems with complex relationships.

The paper is organized as follows. We present a general
framework to find community evolution for dynamic multi-
mode networks in Section 2. An iterative solver is provided
in Section 3. After that, we also discuss how to handle an
actor dying or a new actor joining the network, and other
multi-mode networks of diverse properties. In Section 5,
extensive experiments on both synthetic and real-world data
are conducted to study the efficacy and efficiency of our
framework. We review some related literature in Section 6
and conclude in Section 7.

2. PROBLEM FORMULATION

We follow the framework presented in [23]. Given an
m-mode network with m types of actors
X(z):{$§:$§77$21} 7::17"'7m

where n; is the number of actors for X;, we aim to find how
the latent community evolves. In our framework, we only
consider discrete time stamps by taking a series of snapshots,
which is commonly adopted in network analysis with tem-
poral information [4, 21]. For snapshot at time ¢, a network
N* is represented as multiple interactions between different
modes. Let R;j € IR™*™ denotes the interaction between
two modes of actors X; and X; at time stamp ¢, k; and k;
denote the number of latent communities for X; and X; re-
spectively. Ideally, the interaction between actors can be



approximated by the interactions between groups in the fol-
lowing form [24, 12]:

Rl ~ 0D AL (V)T

where C(49 e {0,1}"**: denotes latent cluster member-
ship for X; at time stamp ¢, and A; ; represents the group
interaction. In other words, the group identity determines
how two actors interact, which is essentially making simi-
lar assumption as block models [27]. The difference is that
block models deal with the problem from a probabilistic as-
pect and concentrate on one-mode or two-mode networks.
Here we try to identify the block structure of multi-mode
networks via matrix approximation:

min [|Rf; — CCY AL (CY) |7 (1)
k;
st. €Y efo, 1k ol =1, )
k=1
k;
oY ¢ {0, 1}%‘”1 ZCS@’” =1 (3)
k=1

The constraints in 2 and 3 force each row of the indicator
matrix to have only one entry being 1. That is, each actor
belongs to only one community.

Naturally, for dynamic multi-mode networks, the objec-
tive function without considering its temporal effect can be
formulated as

T
min 7 3wl |RI, - CMYAL(CU) TR
t=11<i<j<m
where w‘(lm ) are the weights associated with different inter-
actions. Unfortunately, the discreteness of the constraints
in (2) and (3) makes the problem NP-hard. A strategy that
has been well studied in spectral clustering [37] is to allow
the cluster indicator matrix to be continuous and relax the
hard clustering constraint as follows:

(C(i»t))Tc(ivt) =1
Hence, the problem becomes
T
Fi: min Y > wi||R}; - VAL (U
t=11<i<j<m
(C(i»t))TC(i,t) =1
t=1,---T

s.t.
with

(4)
i=1,---,m,
Then we have the following theorem:

THEOREM 1. Let C" 1 <i <m,1 <t <T be a valid
solution of F1, then CHY gs defined below

Clit) — gl it
QUM =QMNQUNT = I,
Q(i,t) c leixki7

is also a valid solution with the same objective value.

where

PROOF. It suffices to show that the value of each single
term does not change. Given a solution C'** and A;j , We

can choose ZEJ = (Q(i’t))TAE,jQ(j’t)a then
é(i,t)gij(é(j,t))T _ O(i,t)AE’j(O(j,t))T
O

which completes the proof.
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The formulation F1 does not consider the relationship be-
tween consecutive time stamps. But in reality, the cluster-
ing tends to evolve gradually. To get a smooth community
evolution, we add a regularization term 2 which forces the
clustering sequence to be as smooth as possible:

T
Q= %Z ||C(z‘,t) (C(z‘,t))T . C(i,tfl)(c(i,t—l))TH% (5)
t=2

Here, the coefficient % is presented due to notational con-
veniences in later parts. Indeed, we are making a Markov
assumption using this regularization. That is, current clus-
ter should be similar to the clustering results in previous
time stamp.

Note that we do not take the regularization as

T
Q=3 |lc™ -G

t=2

which seems more natural at first glimpse. Since cY s
essentially equivalent under an orthogonal transformation as
demonstrated in Theorem 1, comparing them directly does
not necessarily capture the difference between the cluster
indicator at different time stamps. On the contrary, the
regularization term (5) captures the difference of community
structure of neighboring time stamps, and it is independent
of the orthogonal transformation. With this regularization,
the problem can be formulated as:

T
Fz: min » Y wl||Rl; — C™YAL;(C9)T|[%

t=1 i<j
1 - ) ) ) )
_|_§ Zwl()l) Z ||C(lyt)(c(%t))T _ O(l»tfl)(c(l»tfl))TH% (6)
i=1 t=2
st (CPNHTew) =,
with +=1,---,m, t=1,---T
with wl(f) being the trade-off between the loss of interaction

approximation and temporal regularization. The evolution
is assumed to take effect gradually. Essentially, we aim to
find a community structure which is consistent with the in-
teraction matrix, whereas not too different from that of the
previous time stamp.

3. EVOLUTIONARY CLUSTERING

Here, we give an effective iterative algorithm to solve the
formation Fg2 in (6).

3.1 Computation of A

THEOREM 2. If CY are given, the optimal group inter-
action matriz Aﬁyj can be calculated as

¢ i t\T ot j t
Af; = (CU9)TR] U0
PRrROOF. Since Aﬁyj appears only in a single term, we can

focus on the term to optimize AEJ.
t i) gt i NT (|2
|R: ;= OO AL (CUO) T3
— tr-[(R;j—C(i’t)A;j (C(j’t))T)(R;‘VJ—C(II’J‘)A;EJ (cl:HTHT
= tr[RE j(RE HT—200D At (CUNHT(RE HT+AL (AL HT)

The 2nd line is obtained via the property that tr(AB) =
tr(BA) and column orthogonality of ¢ and CU".



By setting the derivative with respect to Aij to zero, it
follows that

A;j — (C(i't))TR;jC(j't)
The proof is completed. [l

3.2 Computation of C
Given the optimal Aﬁm it can be verified that

IRL; = €0 AL (G
= IR lIE — IC) TR ,CVF (7)
Meanwhile, we have the temporal regularization term
||O(z,t) (O(i,t))T _ C(i,tfl) (C(’L,tfl))TH%‘
tr (C(iyt)(c(iyt))T + O(i,tfl)(c(i,t—l))T
_2O(i,t)(C(i,t))TC(i,t—l)(O(i,t—l))T)
2k — 2| ()T

(8)

Since ||R} ;|| in (7) and k; in (8) are constants, we can
transform F2 into the following objective:
m

T
Faz: max » Y wi)[[(C")"R],cOV|%

t=11<i<j<m

T m
YD INEE)TEH IR
t=2 i=1
Note that C**) is interrelated with both C'"*) and C’(i’“l),
and there is no direct solver in general. However, it can be
shown that given Y and C(i’til), the optimal Y can
be solved as follows:

9)

THEOREM 3. Given CYY and COED  C%Y can be com-
puted as the top left singular vectors of the matriz P con-
catenated by the following matrices in column-wise:

[{, /wt(l'ivj)R;jc(j,t)} ,{‘ /wékwi)(Rtk,i)Tc(k,t)} ’ /wgi)c(i,til):|
i<j

PROOF. We only focus on those terms in the objective
involving C**). Without loss of generality, we discuss the
cases when 2 <t < T — 1 first.

Z wff’j) ||(C’(i't))TRf’jC’(j’t) | |%

i<j

+ Z w((lk,i) ||(C(k'i))TR}iin’(i't) ||?:
k<i

u[[(C)TCTY

uy[[(CFD) O

tr ((C(i’t))TMfC(i’t))

k<i

L

where M} is defined as
= Z wéi’j)Rfij(j’t) (O(J}t))T(R;ﬁJ_
i<j
+ z wl(lk,i) (Rz,i)Tc(k’t) (O(k’t))TRzyi
k<i
_"_wl()i)c(i,tfl)(c(i,tfl))T
+w£i)c(i,t+1)(c(i,t+l))T

M} )"

(10)
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Algorithm: Evolutionary Multi-mode Clustering
Input: R, k;, wl(lw), wl(;z)
Output: idz("), C:0), At .
Generate initial cluster indicator matrix C'(4:%).
Repeat
Fort=1:T,i=1:m
shrink / expand C(t£D) f necessary;
calculate P} (or M) as in Theorem 3;
calculate SVD of P! (or eigen vectors of M});
update C(5:t) as top left singular (eigen) vectors;
Until the relative change of the objective (F3) < e.
calculate Aﬁ j as in Theorem 2

. calculate thé cluster idz(“?) with k-means on C(i-t)

Figure 3: Algorithm Description

So the problem boils down to a max trace problem with or-
thogonality constraint as in (4). According to Ky-Fan theo-
rem [6], this max-trace problem has a closed form solution,
which corresponds to the subspace spanned by the top k;
eigen vectors of M.

Note that M; is a square matrix of size n; X n;. When
the number of actors in X; is huge, direct calculating M}
and its eigen vectors could be problematic. Instead, we can
represent M/ in the following matrix form:

M} =P}« (P)T (11)

where P/ is concatenated by the following matrices in column-
wise:

i,J) pt j.t (ki t T ~(k,t i RES
|:{\/“’¢(1—JR¢,]'C(J )}i<j’{m(kai) o )}k<i7\/$c( + ):|
(12)
For t = 1 ort = T, we only need to keep CtY or
Ct=1) respectively, instead of C***1 . Typically the size
of P} is much smaller compared to M} if the number of
clusters of each mode is small. Let the SVD of P; as P; =
USV, then M; = US?U”. That is, the top left singular
vectors [ug, - - ,ug,;] corresponds to the top eigen vectors of
M;, which completes the proof. Typically, we can use some
methods like Arnoldi method [15] to calculate only its top
left singular vectors, which could alleviate the computational
burden for large-scale sparse networks. [

As can be seen in (12), the clustering result of neighboring
time stamps and clustering of interacted objects, essentially
form weighted features for clustering of the i-th mode. M7,
being the inner product of P}, acts like a similarity ma-
trix for clustering. Based on Theorem 3, we can update the
cluster indicator matrix iteratively based on the “attributes”
obtained from the clustering results of related objects and
neighboring time stamps. Given the cluster indicator ma-
trix, one problem remains to be addressed is how to recover
the discrete hard cluster based on cluster indicator matrix.
k-means has been shown to be an effective post-processing
method [3]. The overall description of the algorithm is pre-
sented in Figure 3. In the algorithm, we specify the ob-
jective to be calculated via F3, as direct calculation of the
original formation F2 usually requires computation of dense
matrices, which is not applicable for large scale multi-mode
networks.

4. EXTENSIONS

Based on the framework proposed in previous section, it
is easy to extend the model to handle other multi-mode net-
works with various properties.



Actor Attributes. As we have shown in the introduc-
tion, a multi-mode network might have attributes for certain
modes of actors. In this situation, we can simply add the
weighted attributes as features in P} (12) when updating
the cluster indicator matrix. That is:

{ wg@"”Rﬁ,jO“’t)} AP e ([ gt
JF#i

where F} denotes the attributes for actors in mode i, and

Pl =

wgl) denotes the weight.

Within-mode Interactions. It is possible that there
is within-mode interaction in a complicated network, e.g,
the paper citations in the example of academic publications
(Figure 2). For undirected within-mode interaction, we can
just add interaction matrix to M{ (10). For directed within-
mode interaction R;;, we can construct a symmetric simi-
larity matrix by averaging the commutative strength of in-
teractions:

Rzymmetm’c = (Rf,l + (Rf,z)T)/27

or compute a normalized similarity matrix following random
walk as shown in [38]. As for one mode, actors within the
same community tend to have dense within-group interac-
tion and sparse inter-group interaction. This observation is
naturally obeyed when the similarity matrix M} is affected
with within-mode interaction for updating clustering.

Inactive and Emerging Nodes. Some actors might
become inactive at a certain time period. Meanwhile, new
actors might join the network at a specific time stamp. The
framework presented in previous section focuses on cases
where actors under study do not change. Here, we analyze
more realistic cases where actors hibernate or join a network.

Note that our derived algorithm just uses CHED a5 at-
tributes for current time stamp. When an actor dies or
hibernates at certain time stamp, we can delete the entry
in C*Y when updating C". However, after deletion,
the orthogonality constraints might not be satisfied. Since
our framework is an approximation to the hard clustering,
some tiny deviation from orthogonality does not affect the
performance. On the other hand, when lots of actors be-
come inactive, the total weights of remaining actors after
removal is relatively small, thus affect less while calculat-
ing the similarity matrix M}. This also makes sense since
a drastic membership change denotes the latent community
is experiencing an “earthquake”, thus it is not necessary to
over-regularize the temporal change.

When X; at time stamp ¢ has new actors, a reasonable way
is to set the entries related to the new actors in similarity
matrix (computed by CtE1 (CEHEINTY t6 be the average
similarity as in[10]. We adopt a simple strategy in this case
by setting the entries corresponds to the new nodes to 0 in
COHED - As we know, the indicator matrix approximates
the discrete cluster by 1/y/n; [37], where n; is the number
of members in the cluster. Hence, setting the new actor’s
indicator matrix of neighboring time stamps to 0, has the
tendency to attach this new member to the large community.

Online Clustering. In some real-world scenarios, the
task is to track the cluster evolution in an online fashion.
Then the algorithm could be modified accordingly. Instead
of iteratively updating C?, we fix t. The corresponding
updating matrix P} and M} only involve fixed Cct=1 and
does not involve Ct+1)
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5. EXPERIMENTS

In this section, we compare our proposed evolutionary
method in Figure 3 with the method that does not consider
any temporal information on both synthetic and real-world
data. For completeness, we include the results of both online
and offline evolutionary methods.

5.1 Synthetic Data

Since typical real-world data does not have the ground
truth (the latent community of each social actor at certain
time stamp) available, we resort to synthetic data as a proof
of concept to show the efficacy of our algorithm. The syn-
thetic network consists of three modes: A, B and C, with 2,
3 and 4 clusters, and 50, 100, and 200 actors, respectively.
The interactions occur between each of the two modes. To
generate the interaction, we

e Determine the latent community for each actor;

e Generate interactions following a Bernoulli distribution
based on the group identity of interacted two actors.

To simulate the evolution,

e The community membership is determined in the initial
stage. Later in each time stamp, certain percentage of
(5% —20%) actors change their group identity randomly;

e The probability of interaction between different groups
is sampled with a Gaussian distribution centered on the
probability of previous time stamp;

e Uniform random noise is added in each time stamp.

Three methods are compared: independent, online, and
evolutionary spectral multi-mode clustering. To study the
property of the methods, we generate data of various noise
level. For each level, 10 synthetic network are constructed.
For simplicity, we set all the weights w$? and wp in (6) to
1, and deem the algorithm to be converged if the relative
objective change is less than 107%. Normalized mutual in-
formation (NMI) [31] is adopted to evaluate the clustering
performance. NMI is a measure between 0 and 1. NMI=1
when two clusters are exactly the same. The average per-
formance of all the methods are reported in Table 1.

It is evident that the performance deteriorates as the noise
increases. When the noise level is low (the left part of the ta-
ble), all the methods perform similarly. When the noise is of
medium level, our proposed evolutionary multi-mode clus-
tering approach outperforms the other two. Surprisingly, it
is difficult to distinguish online clustering from independent
clustering. This is probably due to the fact that we do not
perform any parameter tuning.

To show the effect of parameter tuning, we choose one
data set of medium noise level and apply both online clus-
tering and evolutionary multi-mode clustering with tempo-
ral weights w;p varying from 0.01 to 1000 and w, fixed to 1.
As shown in Figure 4, it might worsen the performance if
the temporal weight is too large, that is, when the temporal
regularization dominates. However, for all the three modes
A, B and C, taking into account the temporal information
could help clustering. This is implied when the temporal
weight is within the range of 0.01 and 100. It is noticed that
complicated clustering structure (e.g. mode C' has more
clusters than the other 2 modes) requires a larger temporal
weight. This could be suggestive for practical deployment.

We also plot the average computation time in Figure 5.
Independent clustering takes the least time and online clus-



Table 1: NMI on synthetic data with three modes A, B and C over 10 runs. The noise are gradually increasing
from left to right when generating the network. Bold entries denote the best one among the methods.

Independent | 0.999 0.999 0.994 0.9515 0.9502 0.8579 0.6666 0.432 0.3086 0.2192
A Online | 0.999 0.999 0.994 0.9544 0.9487 0.8584 0.675 0.4234 0.309 0.22
Evolutionary | 0.999 0.999 0.994 0.966 0.96 0.875 0.6638 0.4308 0.3072 0.2026
Independent | 0.933 0.9164 0.9092 0.8692 0.8078 0.7251 0.5603 0.4286 0.2987 0.1922
B Online | 0.941 0.936 0.9068 0.8771 0.824 0.7195 0.5637 0.4245  0.298 0.1904
Evolutionary | 0.9377 0.9269 0.911 0.885 0.824 0.736 0.588 0.446 0.308 0.196
Independent | 0.8694 0.84 0.8652 0.7532 0.7042 0.6094 0.4742 0.3469 0.2442 0.1332
C Online | 0.875 0.8365 0.8644 0.7601 0.7033 0.6062 0.4775 0.3497 0.2453 0.135
Evolutionary | 0.8678 0.8296 0.868 0.77 0.717 0.621 0.492 0.366 0.251 0.1343
; A 09 B remove top frequent words occurring in more than 19,000
= 08 documents, and those infrequent words with document fre-
08 _ _w—-xmT A 07 A quency less than 10, resulting in a vocabulary of 36,658
p—=e—Q : R : e
06 o8k _ . % \ words. Due to the data collection problem, the initial stage
0 yields low email traffic. Thus, we only consider the time
o4 04 \ period from April, 2001 to March 2002. There are three in-
02 $22§;’:”““’"‘ 03 Y teractions in each month: sender-email, email-receiver, and
o L= Bvolutonary 02 email-words. The weight of email-receiver is normalized by
01 01 1 1000 the number of receivers. For word frequency, we notice that
some words occur very frequently in one email. To avoid the
0.42 ¢ 07 Average dominance of these bursty words, we set the weight of inter-
0.4 o action to be log(word freq) + 1 and then scale each email to
0.38 . *,//;\ N unit length.
0.36 0.5¢ @ . As for DBLP data, four modes are considered: papers,
0.34 04 authors, terms (words extracted from the title), and venues
0.32 (conference or journal names). We extract papers published
03 03 between 1980-2004, remove those papers without authors or
venue information, and terms with low document frequency

0.2

10 1000 0.1

Figure 4: Sensitivity to the temporal weights

—— Independent]
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2 @ 5
8 3 8

Average Computation Time (Sec)

@
8

0
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Figure 5: Average Computation Time

tering is comparable. Evolutionary clustering requires more
time compared with others. This is especially severe when
the noise level is very high. In that case, the temporal
smoothness is destroyed, thus our algorithm requires more
iterations to find an optimal.

5.2 Real-world Data

Two publicly available network data are selected: one is
Enron email corpus?, and the other is DBLP data®.

Enron data [18] provides email documents collected from
150 senior executives in the Enron company. Based on the
email communication, we construct a three-mode network
(user, email, words) for each month. Here, we focus on users
(i.e., email addresses) who send and receive at least 5 emails,
reducing the total number of users to 2,359. In addition, we

http://ciir.cs.umass.edu/%7Ecorrada/enron/
Shttp://kdl.cs.umass.edu/data/dblp /dblp-info.html
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(less than 20) and stop words, resulting in 491,726 papers,
347,013 authors, 2,826 venues, and 9,523 terms. Figure 6(b)
demonstrates the number of papers, active authors, venues,
and terms in each year, respectively.

5.2.1 Evaluation Methodology

Different from synthetic data, no ground truth of the com-
munity membership is available for real-world data. Thus it
is difficult to verify the performance of our proposed method
directly using NMI as shown on the synthetic data. Instead,
we present an approach to compare the relative performance
of different methods. For convenience, we present the evalu-
ation approach based on the Enron data here. Similar strat-
egy can be derived for the DBLP data.

We follow the standard approach to split the Enron data of
each month into two parts. The first half is used for training
to obtain the clusters of users and words, and the remaining
half is used to measure how the cluster approximates the
interaction. Notice that there is no overlap between training
and test documents, so the clustering result of emails cannot
be verified. Therefore, we only focus on how the cluster of
words and users approximate the interaction in the test data.

Suppose we are given an interaction Remair,; between email
and X; (being sender, receiver, or words) for testing. Ideally,
Remait,i can be factored into the following form

T
Remail,i - emailACi

where C' denotes the cluster membership of different modes.
To measure the quality of C;, one natural solution is to use
the approximation error Remaii,i — Cema“AC’iT. A cluster
indicator matrix can be constructed based on the cluster
membership and then plugged into C; to minimize the ap-



Table 2: Performance on Enron data based on one year network information. “Inde” in the first row represents
clustering without any any temporal information; “Online” represents an online version of evolutionary multi-

mode clustering; “Evol” in the last row represents our proposed
bold entry in each column represents the best performance of the

evolutionary multi-mode clustering. The
three approaches.

2001-04 2001-05 2001-06 2001-07  2001-08 2001-09 2001-10  2001-11 2001-12 2002-01 2002-02 2002-03
Inde 3222.7 2671.9 1012.2 1639.1 1770.6 1620.1 4449.3 3057.2 1884.0 3205.9 969.4 801.2
Online | 3248.6 2660.3 1040.8 1640.1 1738.6 1680.6 4422.3 2926.1 1904.0 3067.4 968.9 814.5
Evol 3313.1 2719.6 1084.9 1656.2 1797.9 1702.2 4370.7 2979.3 1920.4 3156.7 1041.3 824.0
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Figure 6: (a): Emails sent each month on Enron data; (b) Number of papers, active authors, venues and
terms each year on DBLP data; (¢) Venue communities extracted from DBLP data in 2004.

proximation error. Note that the calculation of a hard clus-
tering of Cemqir might introduce more noise in the process,
so we directly approximate Remail,i by C’,L-T in the following
form:

mBjn ||Remail,i - BCZT||2F

It is not difficult to verify that the minimal value is || R||3 —
[|RC||%, obtained when B = RC. Since ||R||% is a con-
stant, the cluster assignment that maximizes ||RC||% yields
a low approximation error. Therefore, we adopt ||RC||3 in
measuring the quality of a clustering result. The larger the
value, the better a cluster.

Note that this strategy, essentially, is to approximate the
sparse interaction with group interaction blocks. Even with
the true latent community structure, the approximation er-
ror could still be large. It is not appropriate to determine
the significance of improvement by comparing the absolute
value directly. Here, we adopt this measure mainly to com-
pare the relative performance of different methods.

5.2.2  Performance Comparison

For simplicity, we set all the input weights of the algo-
rithm in Figure 3 to 1. The number of communities of each
mode is fixed to 50 and 20 for Enron and DBLP, respec-
tively. The performance of different methods on Enron data
are reported in Table 2. Note that most of the time, our pro-
posed method works best. Except three months: October,
November 2001, and January 2002, in which independent
multi-mode clustering method works best. Note that during
these three months, the email communication is abundant
as shown in Figure 6(a). That is, when the training process
has enough data, it is not necessary to consider any tem-
poral information. Online clustering, as shown in the table,
yields a limited improvement and sometimes could worsen
the performance.

For DBLP data, as shown in Table 3, evolutionary cluster-
ing often outperforms other two. Online clustering occasion-
ally performs best, and usually better than clustering with-
out temporal regularization. Independent clustering, which
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Table 3: Performance on DBLP data (x10%)

Year | Independent | Online | Evolutionary
1980 0.1265 0.1279 0.1371
1981 0.1695 0.1754 0.1787
1982 0.1762 0.1733 0.1839
1983 0.1789 0.1851 0.1893
1984 0.2127 0.2167 0.2261
1985 0.2403 0.2291 0.2514
1986 0.2576 0.2598 0.2535
1987 0.2855 0.2969 0.3075
1988 0.3046 0.3224 0.3238
1989 0.3534 0.3425 013596
1990 0.4012 0.4034 0.4242
1991 0.4389 0.4381 0.4395
1992 0.4992 0.5071 0.5187
1993 0.5610 0.5759 0.5887
1994 0.6418 0.6618 0.6576
1995 0.6885 0.6658 0.7102
1996 0.7861 0.7944 0.8110
1997 0.9470 0.9546 0.9644
1998 1.0054 1.0110 1.0098
1999 1.0939 1.0893 1.0967
2000 1.2308 1.2337 1.2549
2001 1.5123 1.5003 1.5319
2002 1.7874 1.7911 1.7828
2003 2.2491 2.2649 2.2697
2004 2.7684 2.7717 2.7807

does not consider temporal smoothness, tends to overfit the
training data with a poor latent community structure. In
general, taking into account the temporal smoothness helps
to extract a better community structure.

One question remains: dose our method find out meaning-
ful community and evolutions in reality. In the first block
of Figure 6(c), we show one example of venue community
concentrating on Web extracted from our method, which is
reasonably consistent with the topics associated with those
conference and journals. To check the validity of our method



for detecting evolution, we focus on NIPS conference as an
example. We found that NIPS is associated with Neural
Network in 1995, but is more aligned with machine learn-
ing later as shown in the second block of Figure 6(c). This
indicates that our method can detect the evolution of com-
munity in multi-mode networks and find out the latent com-
munity more accurately.

We also recorded the computation time for all the methods
in Table 4. Independent clustering converges quickly, while
online clustering moderately increases the time, and evolu-
tionary clustering costs most computational time. However,
as seen in the table, the computational cost is of the same
order on both data sets. We found out that independent
cluster usually converges in 3 or 4 iterations, whereas evo-
lutionary clustering requires less than 10 iterations.

Table 4: Computation Time

Method | Independent Online Evolutionary
Enron | 5.0699 x 10° 8.4974 x 10° 1.1076 x 10*
DBLP | 2.1033 x 10> 2.6945 x 10>  5.0491 x 10®

6. RELATED WORK

There have been extensive works studying the structural
property of interactions between actors. One probabilistic
approach is the stochastic block model [27], in which the link
between actors is generated conditioned on the latent cluster
membership of actors. Two actors within the same cluster
are treated stochastically equivalent. That is, the interac-
tions between (A1, B1) and (A2, B2) have the same proba-
bility if A; and As, By and Bz belong to the same cluster,
respectively. In classic block models, the number of clusters
are fixed. The work in [17] replaces the constraint by assign-
ing a Chinese restaurant process as a prior to generate clus-
ter membership for each actor, thus the number of clusters
can be automatically determined by assigning proper prior.
Mixed block model is also developed [1]. Long et al [25] pro-
poses a probabilistic framework similar to stochastic block
model to handle multi-mode networks with interactions and
attributes. Typically, some MCMC technique is employed
to approximate the inference. With the development of
topic models [7], it is also extended to model documents
within a social network [39], and the author/document, or
sender /receiver/email interactions [34, 26]. The model is
typically specific for certain type of documents like Emails
or papers.

Another attempt to model the structure is latent space
model. Intuitively, latent space models map the social actors
to a latent low-dimensional space such that the actors whose
positions are closer to each other are more likely to interact
with each other [29, 16]. However, existing latent space
models mainly study one-mode networks. Some works try to
address the problem in multi-mode networks. [14] essentially
study a two-mode network (authors and words) and maps
both authors and words into the same Euclidean space.

Spectral relational clustering, which is most related to
multi-mode network, tries to discover the latent structure
based on multiple relational tables. As the original prob-
lem of finding discrete cluster assignment (e.g., the entries
of membership vector are either 0 or 1) is NP-hard, spectral
clustering relaxes the constraint to allow the membership
vector to be continuous. The initial work of co-clustering [11,
36, 24] tries to address the problem of clustering both words
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and documents simultaneously by taking the advantage of
bipartite. [13] extends the problem to a star-typed net-
work with multiple heterogeneous data object, and proposes
semi-definite programming to solve the problem. [33] pro-
poses reinforce clustering for multiple heterogeneous data
objects. In [23], a general spectral clustering framework is
proposed to handle multi-type relational clustering with dif-
ferent kinds of objects and attributes, and an alternating
optimization algorithm is presented to find a local optimal.

Temporal change of social networks has been attracting
increasing attentions [8, 2]. It is empirically observed that
some real-world networks are evolving [19] and some practi-
tioners try to investigate how the network evolve and what
could be a reasonable generative process to model the dy-
namics [21] or the critical factors to determine the group
evolution [4]. On the other hand, clustering to handle evolu-
tionary data is also developed. It is assumed that clustering
result of current situation should be similar to previous time
stamps. Instead of taking multiple snapshots of the data
and independently clustering objects, evolutionary cluster-
ing finds out a sequence of clustering with temporal smooth-
ness [9, 10, 22]. Latent space model with temporal change is
also developed [30], which aims to find an embedding that is
consistent with the trade-off between previous time stamp
and current distance information extracted from the social
network. [32] proposes a general framework to handle dy-
namic single-mode network by casting it as a graph coloring
problem and some greedy heuristics is developed to handle
large-scale data. All the aforementioned works are focus-
ing on data with attributes or single-mode network. In this
work, we explore the community evolution in multi-mode
networks.

7. CONCLUSIONS

In some real-world applications, social actors of various
types interact with each other resulting in a multi-mode
network. In such a network, different modes of social actors
form their own community and tend to evolve gradually. In
this work, we propose an evolutionary multi-mode clustering
algorithm to find community evolution in multi-mode net-
works. Within this framework, it is easy to handle networks
with attributes, within-mode interactions, and hibernating
and emerging social actors. We applied our framework to
both carefully designed synthetic data sets and real-world
large scale multi-mode networks. It is empirically demon-
strated that our algorithm tends to find more accurate com-
munity information given a sequence of network snapshots.
This is more likely when the collected interactions are few
and noise is within medium level. Our algorithm can easily
scale to large complicated multi-mode networks of tens of
thousands of nodes.

The shortcoming of the current framework is that it needs
users to provide weights for different interactions and tem-
poral information, as well as the number of communities in
each mode. How to automatically determine the weights
and number of communities is a challenging problem. An-
other possible extension is to consider the evolution of group
interaction. Currently, our model only considers the group
membership change. But the interactions between groups
could also change gradually. How to capture both the micro-
level evolution of actors and macro-level evolution of groups
simultaneously requires further research.
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