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Abstract The prosperity of Web 2.0 and social media brings about many diverse social
networks of unprecedented scales, which present new challenges for more effec-
tive graph-mining techniques. In this chapter, we present some graph patterns
that are commonly observed in large-scale social networks. As most networks
demonstrate strong community structures, one basic task in social network anal-
ysis is community detection which uncovers the group membership of actors in
a network. We categorize and survey representative graph mining approaches
and evaluation strategies for community detection. We then present and discuss
some research issues for future exploration.

Keywords: Social Network Analysis, Graph Mining, Community Detection,

1. Introduction

Social Network Analysis (SNA) [61] is the study of relations between indi-
viduals including the analysis of social structures, social position, role analysis,
and many others. Normally, the relationship between individuals, e.g., kinship,
friends, neighbors, etc. are presented as a network. Traditional social science
involves the circulation of questionnaires, asking respondents to detail their
interaction with others. Then a network can be constructed based on the re-
sponse, with nodes representing individuals and edges the interaction between
them. This type of data collection confines traditional SNA to a limited scale,
typically at most hundreds of actors in one study.
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With the prosperity of Internet and Web 2.0, many social networking and
social media sites are emerging, and people can easily connect to each other in
the cyber space. This also facilitates SNA to a much larger scale — millions
of actors or even more in a network; Examples include email communication
networks [18], instant messenger networks [33], mobile call networks [39],
friends networks [38]. Other forms of complex network, like coauthorship or
citation networks [56], biological networks, metabolic pathways, genetic regu-
latory networks, food web and neural networks, are also examined and demon-
strate similar patterns [44]. These large scale networks of various entities yield
patterns that are normally not observed in small networks. In addition, they
also pose computational challenges as well as new tasks and problems for the
SNA.

Social network analysis involves a variety of tasks. To name a few, we list
some that are among the most relevant to the data mining field:

Centrality analysis aims to identify the “most important” actors in a so-
cial network. Centrality is a measure to calibrate the “importance” of
an actor. This helps to understand the social influence and power in a
network.

Community detection. Actors in a social network form groups1. This
task identify these communities through the study of network structures
and topology.

Position/Role analysis identifies the role associated with different actors
during network interaction. For instance, what is the role of “husband”?
Who serves as the bridge between two groups?

Network modeling attempts to simulate the real-world network via sim-
ple mechanisms such that the patterns presented in large-scale complex
networks can be captured.

Information diffusion studies how the information propagates in a net-
work. Information diffusion also facilitates the understanding the cul-
tural dynamics, and infection blocking.

Network classification and outlier detection. Some actors are labeled
with certain information. For instance, in a network with some terror-
ists identified, is it possible to infer other people who are likely to be
terrorists by leveraging the social network information?

Viral marketing and link prediction. The modeling of the information
diffusion process, in conjunction with centrality analysis and communi-

1In this chapter, community and group are used interchangeably.
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ties, can help achieve more cost-effective viral marketing. That is, only
a small set of users are selected for marketing. Hopefully, their adoption
can influence other members in the network, so the benefit is maximized.

Normally, a social network is represented as a graph. How to mine the
patterns in the graph for the above tasks becomes a hot topic thanks to the
availability of enormous social network data. In this chapter, we attempt to
present some recent trends of large social networks and discuss graph mining
applications for social network analysis. In particular, we discuss graph mining
applications to community detection, a basic task in SNA to extract meaning-
ful social structures or positions, which also serves as basis for some other
related SNA tasks. Representative approaches for community detection are
summarized. Interesting emerging problems and challenges are also presented
for future exploration.

For convenience, we define some notations used throughout this chapter. A
network is normally represented as a graph G(V,E), where V denotes the ver-
texes (equivalently nodes or actors) and E denotes edges (ties or connections).
The connections are represented via adjacency matrix A, where Aij ∕= 0 de-
notes (vi, vj) ∈ E, while Aij = 0 denotes (vi, vj) /∈ E. The degree of node vi
is di. If the edges between nodes are directed, the in-degree and out-degree are
denoted as d−i and d+i respectively. Number of vertexes and edges of a network
are ∣V ∣ = n, and ∣E∣ = m, respectively. The shortest path between a pair of
nodes vi and vj is called geodesic, and the geodesic distance between the two
is denoted as d(i, j). Gs(Vs, Es) represents a subgraph in G. The neighbors of
a node v are denoted as N(v). In a directed graph, the neighbors connecting to
and from one node v are denoted as N−(v) and N+(v), respectively. Unless
specified explicitly, we assume a network is unweighted and undirected.

2. Graph Patterns in Large-Scale Networks

Most large-scale networks share some common patterns that are not notice-
able in small networks. Among all the patterns, the most well-known charac-
teristics are: scale-free distribution, small world effect, and strong community
structure.

2.1 Scale-Free Networks

Many statistics in real-world have a typical “scale”, a value around which
the sample measurements are centered. For instance, the height of all the peo-
ple in the United States, the speed of vehicles on a highway, etc. But the node
degrees in real-world large scale social networks often follow a power law
distribution (a.k.a. Zipfian distribution, Pareto distribution [41]). A random
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Figure 16.1. Different Distributions. A dashed curve shows the true distribution and a solid
curve is the estimation based on 100 samples generated from the true distribution. (a) Normal
distribution with � = 1, � = 1; (b) Power law distribution with xmin = 1, � = 2.3; (c) Loglog plot,
generated via the toolkit in [17].

variable X follows a power law distribution if

p(x) = Cx−�, x ≥ xmin, � > 1 (2.1)

here � > 1 is to ensure a normalization constant C exists [41]. A power
law distribution is also called scale-free distribution [8] as the shape of the
distribution remains unchanged except for an overall multiplicative constant
when the scale of units is increased by a factor. That is,

p(ax) = bp(x) (2.2)

where a and b are constants. In other words, there is no characteristic scale with
the random variable. The functional form is the same for all the scales. The
network with a scale-free distribution for nodal degrees is also called scale-free
network.

Figures 16.1a and 16.1b demonstrate a normal distribution and a power-
law distribution respectively. While the normal distribution has a “center”,
the power law distribution is highly skewed. For normal distribution, it is ex-
tremely rare for an event to occur that are several deviations away from the
mean. On the contrary, power law distribution allows the tail to be much
longer. That is, it is common that some nodes in a social network have ex-
tremely high degrees while the majority have few connections. The reason
is that the decay of the tail for a power law distribution is polynomial. It is
asymptotically slower than exponential as presented in the decay of normal
distribution, resulting in a heavy-tail (or long-tail [6], fat-tail) phenomenon.

The curve of power law distribution becomes a straight line if we plot the
degree distribution in a log-log scale, since

log p(x) = −� log x+ logC

This is commonly used by practitioners to rigorously verify whether a distribu-
tion follows power law, though some researchers advise more careful statistical
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examination to fit a power law distribution [17]. It can be verified the cumula-
tive distribution function (cdf) can also be written in the following form:

F (X ≥ x) ∝ x−�+1

The samples of rare events (say, extremely high degrees in a network) are
scarce, resulting in an unreliable estimation of the density. A more robust
estimation is to approximate the cdf. One example of the loglog plot of cdf
estimation is shown in Figure 16.1c.

Besides node degrees, some other network statistics are also observed to
follow a power law pattern, for example, the largest eigenvalues of the adja-
cency matrix derived from a network [21], the size of connected components
in a network [31], the information cascading size [36], and the densification
of a growing network [34]. Scale-free distribution seems common rather than
“by chance” for large-scale networks.

2.2 Small-World Effect

Travers and Milgram [58] conducted a famous experiment to examine the
average path length for social networks of people in the United States. In
the experiments, the subjects involved were asked to send a chain letter to
his acquaintances starting from an individual in Omaha, Nebraska or Wichita,
Kansas to the target individual in Boston, Massachusetts. Finally, 64 letters
arrived and the average path length fell around 5.5 or 6, which later led to the
so-called “six degrees of separation”. This result is also confirmed recently in
a planetary-scale instant messaging network of more than 180 million people,
in which the average path length of two messengers is 6.6 [33].

This small world effect is observed in many large scale networks. That is,
two actors in a huge network are actually not too far away. To quantify the
effect, different network measures are used:

Diameter: a shortest path between two nodes is called a geodesic, and
diameter is the length of the longest geodesic between any pair of nodes
in the graph [61]. It might be the case that a network contains more
than one connected component. Thus, no path exists between two nodes
in different components. In this case, practitioners typically examine
the geodesic between nodes of the same component. The diameter is
the minimum number of hops required to reach all the connected nodes
from any node.

Effective Eccentricity: the minimum number of hops required to reach
at least 90% of all connected pairs of nodes in the network [57]. This
measure removes the effect of outliers that are connected through a long
path.
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Figure 16.2. A toy example to compute clustering coefficient: C1 = 3/10, C2 = C3 = C4 = 1,
C5 = 2/3, C6 = 3/6, C7 = 1. The global clustering coefficient following Eqs. (2.5) and (2.6) are
0.7810 and 0.5217, respectively.

Characteristic Path Length: the median of the means of the shortest
path lengths connecting each node to all other nodes (excluding unreach-
able ones) [12]. This measure focuses on the average distance between
pairs rather than the maximum one as the diameter.

All the above measures involve the calculation of the shortest path between
all pairs of connected nodes. Two simple approaches to compute the diameter
are:

Repeated matrix multiplication. Let A denotes the adjacency matrix of
a network, then the non-zero entries in Ak denote those pairs that are
connected in k hops. The diameter corresponds to the minimum k so
that all entries of Ak are non-zero. It is evident that this process leads
to denser and denser matrix, which requires O(n2) space and O(n2.88)
time asymptotically for matrix multiplication.

Breadth-first search can be conducted starting from each node until all
or a certain proportion (90% as for effective eccentricity) of the network
nodes are reached. This costs O(n+m) space but O(nm) time.

Evidently, both approaches above become problematic when the network
scales to millions of nodes. One natural solution is to sample the network,
but it often leads to poor approximation. A randomized algorithm achieving
better approximation is presented in [48].

2.3 Community Structures

Social networks demonstrate a strong community effect. That is, a group
of people tend to interact with each other more than those outside the group.
To measure the community effect, one related concept is transitivity. In a
simple form, friends of a friend are likely to be friends as well. Clustering
coefficient is proposed specifically to measure the transitivity, the probability
of connections between one vertex’s neighboring friends.

Definition 2.1 (Clustering Coefficient). Suppose a node vi has di neighbors,
and there are ki edges among these neighbors, then the clustering coefficient
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is

Ci =

{
ki

di×(di−1)/2 di > 1

0 di = 0 or 1
(2.3)

The denominator is essentially the possible number of edges between the
neighbors. Take the network in Figure 16.2 as an example. Node v1 has 5
neighbors v2, v3, v4, v5, and v6. Among these neighbors, there are 3 edges
(dashed lines) (v2, v3), (v4, v6) and (v5, v6). Hence, the clustering coefficient
of v1 is 3/10. Alternatively, clustering coefficient can also be equally defined
as:

Ci =
number of triangles connected to node vi

number of connected triples centered on node vi
(2.4)

where a triple is a tuple (vi, {vj , vk}) such that (vi, vj) ∈ E, (vi, vk) ∈ E,
and the flanking nodes vj and vk are unordered. For instance, (v1, {v3, v6})
and (v1, {v6, v3}) in Figure 16.2 represent the same triple centered on v1 and
there are in total 10 such triples. Triangle denotes an unordered set of three
vertexes such that each two is connected. The triangles connected to node v1
are {v1, v2, v3}, {v1, v4, v6} and {v1, v5, v6}, so C1 = 3/10.

To measure the community structure of a network, two commonly used
global clustering coefficients are defined by extending the definition of
Eqs. (2.3) and (2.4), respectively.

C =

n∑

i=1

Ci/n (2.5)

C =

∑n
i=1 number of triangles connected to node vi∑n

i=1 number of connected triples centered on node vi

=
3× number of triangles in the network

number of connected triples of nodes
(2.6)

Eq. (2.5) yields high variance for nodes with less degrees. E.g., for nodes
with degree 2, Ci is either 0 or 1. It is commonly used for numerical study [62]
whereas Eq. (2.6) is used more for analytical study. In the toy example, the
global clustering coefficients based the two formulas are 0.7810 and 0.5217
respectively.

The computation of global clustering coefficient relies on exact counting of
triangles in the network which can be computationally expensive [5, 51, 30].
One efficient exact counting method without huge memory requirement is the
simple node-iterator (or edge-iterator) algorithm, which essentially traverse all
the nodes (edges) to compute the number of triangles connected to each node
(edge). Some approximation algorithms are proposed, which require one sin-
gle pass [13] or multiple passes [9] of the huge edge file. It can be verified that
the number of triangles is proportional to the sum of the cube of eigenvalues of
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the adjacency matrix [59]. Thus, using the few top eigenvalues to approximate
the number is also viable.

While clustering coefficient and transitivity concentrate on microscopic
view of community effect, communities of macroscopic view also demonstrate
intriguing patterns. In real-world networks, a giant component tends to form
with the remaining being singletons and minor communities [28]. Even within
the giant component, tight but almost trivial communities (connecting to the
rest of the network through one or two edges) at very small scales are of-
ten observed. Most social networks lack well-defined communities in a large
scale [35]. The communities gradually “blend in” the rest of the network as
their size expands.

2.4 Graph Generators

As large scale networks demonstrate similar patterns, one interesting ques-
tion is: what is the innate mechanism of these networks? A variety of graph
and network generators have been proposed such that these patterns can be
reproduced following some simple rules. The classical model is the random
graph model [20], in which the edges connecting nodes are generated proba-
bilistically via flipping a biased coin. It yields beautiful mathematical prop-
erties but does not capture the common patterns discussed above. Recently,
Watts and Strogatz proposed a model mixing the random graph model and
a regular lattice structure, producing small diameter and high clustering ef-
fect [62]; a preferential attachment process is presented in [8] to explain the
power law distribution exhibited in real-world networks. These two pieces of
seminal work stir renewed enthusiasm researching on pursing graph genera-
tors to capture some other network patterns. For instance, the availability of
dynamic network data enables the possibility to study how a network evolves
and how its fundamental network properties vary over time. It is observed that
many growing networks are becoming denser with average degrees increasing.
Meanwhile, the effective diameter shrinks with the growth of a network [34].
These properties cannot be explained by the aforementioned network models.
Thus, a forest-fire model is proposed. While many models focus on global pat-
terns present in networks, the microscopic property of networks is also calling
for alternative explanations [32]. Please refer to surveys [40, 14] for more
detailed discussion.

3. Community Detection

As mentioned above, social networks demonstrate strong community effect.
The actors in a network tend to form groups of closely-knit connections. The
groups are also called communities, clusters, cohesive subgroups or modules
in different context. Roughly speaking, individuals interact more frequently
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within a group than between groups. Detecting cohesive groups in a social
network (also termed as community detection) remains a core problem in social
network analysis. Finding out these groups also helps for other related tasks of
social network analysis. Various definitions and approaches are exploited for
community detection. Briefly, the criteria of groups fall into four categories:
node-centric, group-centric, network-centric, and hierarchy-centric. Below, we
elucidate some representative methods in each category.

3.1 Node-Centric Community Detection

Community detection based on node-centric criteria requires each node in a
group to satisfy certain properties like mutuality, reachability, or degrees.

Groups based on Complete Mutuality. An ideal cohesive group is a
clique. It is a maximal complete subgraph of three or more nodes all of which
are adjacent to each other. For a directed graph, [29] shows that with very
high probability, there should exist a complete bipartite in a community. These
complete bipartites work as a core for a community. The authors propose to
extract an (i, j)-bipartite of which all the i nodes are connected to another j
nodes in the graph.

Unfortunately, it is NP-hard to find out the maximum clique in a network.
Even an approximate solution can be difficult to find. One brute-force approach
to enumerate the cliques is to traverse of all the nodes in the network. For
each node, check whether there is any clique of a specified size that contains
the node. Then the clique is collected and the node is removed from future
consideration. This works for small scale networks, but becomes impractical
for large-scale networks. The main strategy to address this challenge is to
effectively prune those nodes and edges that are unlikely to be contained in a
maximal clique or a complete bipartite.

An algorithm to identify the maximal clique in large social networks is ex-
plored in [1]. Each time, a subset of the network is sampled. Based on this
smaller set, a clique can be found in a greedy-search manner. The maximal
clique found on the subset (say, it contains q nodes) serves as the lower bound
for pruning. That is, the maximal clique should contain at least q members,
so the nodes with degree less than q can be removed. This pruning process
is repeated until the network is reduced to a reasonable size and the maximal
clique can be identified.

A similar strategy can be applied to find complete bipartites. A subtle dif-
ference of the work in [29] is that it aims to find the complete bipartite of a
fixed size, say an (i, j)-bipartite. Iterative pruning is applied to remove those
nodes with their out-degree less than j and their in-degree less than i. After
this initial pruning, an inclusion-exclusion pruning strategy is applied to either
eliminate a node from concentration or discover an (i, j)-bipartite. The authors
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cliques: {v1, v2, v3}
2-cliques: {v1, v2, v3, v4, v5}, {v2, v3, v4, v5, v6}

2-clans: {v2, v3, v4, v5, v6}
2-clubs: {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v2, v3, v4, v5, v6}

Figure 16.3. A toy example (reproduced from [61])

proposed to focus first on nodes that are of out-degree j (or of in-degree i) .
It is easy to check whether a node belongs to an (i, j)-bipartite by examining
whether all its connected nodes have enough connections. So either one node
is purged or an (i, j)-bipartite is identified.

Note that clique (or complete bipartite) is a very strict definition, and rarely
can it be observed in a large size in real-world social networks. This structure
is very unstable as the removal of any edge could break this definition. Prac-
titioners typically use identified maximal cliques (or maximal complete bipar-
tites) as cores or seeds for subsequent expansion for a community [47, 29].
Alternatively, other forms of substructures close to a clique are identified as
communities as discussed next.

Groups based on Reachability. This type of community considers the
reachability between actors. In the extreme case, two nodes can be consid-
ered as belonging to one community if there exists a path between the two
nodes. Thus each component2 is a community. This can be efficiently done in
O(n+m) time. However, in real-world networks, a giant component tends to
form while many others are singletons and minor communities [28]. For those
minorities, it is straightforward to identify them via connected components.
More efforts are required to find communities in the giant component.

Conceptually, there should be a short path between any two nodes in a
group. Several well studied structures in social science are:

k-clique is a maximal subgraph in which the largest geodesic distance
between any two nodes is no greater than k. That is,

d(i, j) ≤ k ∀vi, vj ∈ Vs

2Connected nodes form a component.



Graph Mining Applications to Social Network Analysis 497

Note that the geodesic distance is defined on the original network. Thus,
the geodesic is not necessarily included in the group structure. So a k-
clique may have a diameter greater than k or even become disconnected.

k-clan is a k-clique in which the geodesic distance d(i, j) between all
nodes in the subgraph is no greater than k for all paths within the sub-
graph. A k-clan must be a k-clique, but it is not so vice versa. For
instance, {v1, v2, v3, v4, v5} in Figure 16.3 is a 2-clique, but not 2-clan
as the geodesic distance of v4 and v5 is 2 in the original network, but 3
in the subgraph.

k-club restricts the geodesic distance within the group to be no greater
than k. It is a maximal substructure of diameter k.

All k-clans are k-cliques, and k-clubs are normally contained within k-cliques.
These substructures are useful in the study of information diffusion and influ-
ence propagation.

Groups based on Nodal Degrees. This requires actors within a group to
be adjacent to a relatively large number of group members. Two commonly
studied substructures are:

k-plex - It is a maximal subgraph containing ns nodes, in which each
node is adjacent to no fewer than ns − k nodes in the subgraph. In other
words, each node may have no ties up to k group members. A k-plex
becomes a clique when k = 1.

k-core - It is a substructure that each node (vi) connects to at least k
members within the group, i.e.,

ds(i) ≥ k ∀vi ∈ Vs
The definitions of k-plex and k-core are actually complementary. A k-plex

with group size equal to ns, is also a (ns − k)-core. The structures above are
normally robust to the removal of edges in the subgraph. Even if we miss one
or two edges, the subgraph is still connected. Solving the k-plex and earlier
k-clan problems requires involved combinatorial optimization [37]. As men-
tioned in the previous section, the nodal degree distribution in a social network
follows power law, i.e., few nodes with many degrees and many others with
few degrees. However, groups based on nodal degrees require all the nodes of
a group to have at least a certain number of degrees, which is not very suitable
for the analysis of large-scale networks where power law is a norm.

Groups based on Within-Outside Ties. This kind of group forces each
node to have more connections to nodes that are within the group than to those
outside the group.
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LS sets: A set of nodes Vs in a social network is an LS set iff any of
its proper subsets has more ties to its complement within Vs than to
those outside Vs. An important property which distinguishes LS sets
from previous cliques, k-cliques and k-plexes, is that any two LS sets
are either disjoint or one LS set contains the other [10]. This implies
that a hierarchical series of LS sets exist in a network. However, due the
strict constraint, large-size LS sets are rarely found in reality, leading to
its limited usage for analysis. An alternative generalization is Lambda
sets.

Lambda sets: The group should be difficult to disconnect by the removal
of edges in the subgraph. Let �(vi, vj) denote the number of edges that
must be removed from the graph in order to disconnect any two nodes vi
and vj . A set is called lambda set if

�(vi, vj) > �(vk, vℓ) ∀vi, vj , vk ∈ Vs, ∀vℓ ∈ V ∖ Vs
It is a maximal subset of actors who have more edge-independent paths
connecting them to each other than to outsiders. The minimum connec-
tivity among the members of a lambda set is denoted as �(Gs).

There are more lambda sets in reality than LS sets, hence it is more practical
to use lambda sets in network analysis. Akin to LS sets, lambda sets are also
disjoint at an edge-connectivity level �. To obtain a hierarchical structure of
lambda sets, one can adopt a two-step algorithm:

Compute the edge connectivity between any pair of nodes in the network
via “maximum-flow, minimum-cut” algorithms.

Starting from the highest edge connectivity, gradually join nodes such
that �(vi, vj) ≥ k.

Since the lambda sets at each level (k) is disjoint, this generates a hierarchical
structure of the nodes. Unfortunately, the first step is computationally pro-
hibitive for large-scale networks as the minimum-cut computation involves
each pair of nodes.

3.2 Group-Centric Community Detection

All of the above group definitions are node centric, i.e. each node in the
group has to satisfy certain properties. Group-centric criteria, instead, consider
the connections inside a group as whole. It is acceptable to have some nodes
in the group to have low connectivity as long as the group overall satisfies
certain requirements. One such example is density-based groups. A subgraph
Gs(Vs, Es) is 
-dense (also called a quasi-clique [1]) if

Es

Vs(Vs − 1)/2
≥ 
 (3.1)
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Clearly, the quasi-clique becomes a clique when 
 = 1. Note that this density-
based group typically does not guarantee the nodal degree or reachbility for
each node in the group. It allows the degree of different nodes to vary drasti-
cally, thus seems more suitable for large-scale networks.

In [1], the maximum 
-dense quasi-cliques are explored. A greedy algo-
rithm is adopted to find a maximal quasi-clique. The quasi-clique is initialized
with a vertex with the largest degree in the network, and then expanded with
nodes that are likely to contribute to a large quasi-clique. This expansion con-
tinues until no nodes can be added to maintain the 
-density. Evidently, this
greedy search for maximal quasi-clique is not optimal. So a subsequent local
search procedure (GRASP) is applied to find a larger maximal quasi-clique in
the local neighborhood. This procedure is able to detect a close-to-optimal
maximal quasi-clique but requires the whole graph to be in main memory.
To handle large-scale networks, the authors proposed to utilize the procedure
above to find out the lower bound of degrees for pruning. In each iteration, a
subset of edges are sampled from the network, and GRASP is applied to find
a locally maximal quasi-clique. Suppose the quasi-clique is of size k, it is im-
possible to include in the maximal quasi-clique a node with degree less than
k
, all of whose neighbors also have their degree less than k
. So the node
and its incident edges can be pruned from the graph. This pruning process is
repeated until GRASP can be applied directly to the remaining graph to find
out the maximal quasi-clique.

For a directed graph like the Web, the work in [19] extends the complete-
bipartite core [29] to 
-dense bipartite. (X,Y ) is a 
-dense bipartite if

∀x ∈ X, ∣N+(x) ∩ Y ∣ ≥ 
∣Y ∣ (3.2)

∀y ∈ Y, ∣N−(y) ∩X∣ ≥ 
′∣X∣ (3.3)

where 
 and 
′ are user provided constants. The authors derive a heuristic to
efficiently prune the nodes. Due to the heuristic being used, not all satisfied
communities can be enumerated. But it is able to identify some communities
for a medium range of community size/density, while [29] favors to detect
small communities.

3.3 Network-Centric Community Detection

Network-centric community detection has to consider the connections of the
whole network. It aims to partition the actors into a number of disjoint sets.
A group in this case is not defined independently. Typically, some quantitative
criterion of the network partition is optimized.

Groups based on Vertex Similarity. Vertex similarity is defined in terms
of how similar the actors interact with others. Actors behaving in the same
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v1
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v5 v6 v7 v8 v9

Figure 16.4. Equivalence for Social Position

role during interaction are in the same social position. The position analysis
is to identify the social status and roles associated with different actors. For
instance, what is the role of “wife”? What is the interaction pattern of “vice
president” in a company organization? In position analysis, several concepts
with decreasing strictness are studied to define two actors sharing the same
social position [25]:

Structural Equivalence Actors i and j are structurally equivalent, if for
any actor k that k ∕= i, j, (i, k) ∈ E iff (j, k) ∈ E. In other words, actors
i and j are connecting to exactly the same set of actors in the network.
If the interaction is represented as a matrix, then rows (columns) i and j
are the same except for the diagonal entries. For instance, in Figure 16.4,
v5 and v6 are structurally equivalent. So are v8 and v9.

Automorphic equivalence Structural equivalence requires the connec-
tions of two actors to be exactly the same, yet it is too restrictive. Au-
tomorphic equivalence allows the connections to be isomorphic. Two
actors u and v are automorphically equivalent iff all the actors of G can
be relabeled to form an isomorphic graph. In the diagram, {v2, v4},
{v5, v6, v8, v9} are automorphically equivalent, respectively.

Regular equivalence Two nodes are regularly equivalent if they have
the same profile of ties with other members that are also regularly equiv-
alent. Specifically, u and v are regularly equivalent (denoted as u ≡ v)
iff

(u, a) ∈ E ⇒ ∃b ∈ V, sucℎ tℎat (v, b) ∈ E and a ≡ b (3.4)

In the diagram, the regular equivalence results in three equivalence
classes {v1}, {v2, v3, v4}, and {v5, v6, v7, v8, v9}.

Structural equivalence is too restrictive for practical use, and no effective ap-
proach exists to scale automorphic equivalence or regular equivalence to more
than thousands of actors. In addition, in large networks (say, online friends net-
works), the connection is very noisy. Meaningful equivalence of large scale is



Graph Mining Applications to Social Network Analysis 501

difficult to detect. So some simplified similarity measures ignoring the social
roles are used in practice, including cosine similarity [27], Jaccard similar-
ity [23], etc. They consider the connections as features for actors, and rely on
the fact that actors sharing similar connections tend to reside within the same
community. Once the similarity measure is determined, classical k-means or
hierarchical clustering algorithm can be applied.

It can be time consuming to compute the similarity between each pair of ac-
tors. Thus, Gibson et al. [23] present an efficient two-level shingling algorithm
for fast computation of web communities. Generally speaking, the shingling
algorithm maps each vector (the connection of actors) into a constant num-
ber of “shingles”. If two actors are similar, they share many shingles; other-
wise, they share few. After initial shingling, each shingle is associated with a
group of actors. In a similar vein, the shingling algorithm can be applied to the
first-level shingles as well. So similar shingles end up sharing the same meta-
shingles. Then all the actors relating to one meta-shingle form one community.
This two-level shingling can be efficiently computed even for large-scale net-
works. Its time complexity is approximately linear to the number of edges. By
contrast, normal similarity-based methods have to compute the similarity for
each pair of nodes, totaling O(n2) time at least.

Groups based on Minimum-Cut. A community is defined as a vertex
subset C ⊂ V , such that ∀v ∈ C , v has at least as many edges connecting
to vertices in C as it does to vertices in V ∖C [22]. Flake et al. show that
the community can be found via s-t minimum cut given a source node s in
the community and a sink node t outside the community as long as both ends
satisfy certain degree requirement. Some variants of minimum cut like nor-
malized cut and ratio cut can be applied to SNA as well. Suppose we have a
partition of k communities � = (V1, V2, ⋅ ⋅ ⋅ , Vk), it follows that

Ratio Cut(�) =
k∑

i=1

cut(Vi, V̄i)

∣Vi∣
(3.5)

Normalized Cut(�) =
k∑

i=1

cut(Vi, V̄i)

vol(Vi)
(3.6)

where vol(Vi) =
∑

vj∈Vi
dj . Both objectives attempt to minimize the number

of edges between communities, yet avoid the bias of trivial-size communities
like singletons. Interestingly, both formulas can be recast as an optimization
problem of the following type:

min
S∈{0,1}n×k

Tr(STLS) (3.7)
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where L is the graph Laplacian (normalized Laplacian) for ratio cut (normal-
ized cut), and S ∈ {0, 1}n×k is a community indicator matrix defined below:

Sij =

{
1 if vertex i belongs to community j
0 otherwise

Due to the discreteness property of S, this problem is still NP-hard. A stan-
dard way is to adopt a spectral relaxation to allow S to be continuous leading
to the following trace minimization problem:

min
S∈Rn×k

Tr(STLS) s.t. STS = I (3.8)

It follows that S corresponds to the eigenvectors of k smallest eigenvalues (ex-
cept 0) of Laplacian L. Note that a graph Laplacian always has an eigenvector
1 corresponding to the eigenvalue 0. This vector indicates all nodes belong
to the same community, which is useless for community partition, thus is re-
moved from consideration. The obtained S is essentially an approximation to
the community structure. In order to obtain a disjoint partition, some local
search strategy needs to be applied. An effective and widely used strategy is to
apply k-means on the matrix S to find the partitions of actors.

The main computational cost with the above spectral clustering is that an
eigenvector problem has to be solved. Since the Laplacian matrix is usually
sparse, the eigenvectors correspond to the smallest eigenvalues can be com-
puted in an efficient way. However, the computational cost is still O(n2),
which can be prohibitive for mega-scale networks.

Groups based on Block Model Approximation. Block modeling assumes
the interaction between two vertices depends only on the communities they
belong to. The actors within the same community are stochastically equivalent
in the sense that the probabilities of the interaction with all other actors are the
same for actors in the same community [46, 4]. Based on this block model, one
can apply classical Bayesian inference methods like EM or Gibbs sampling to
perform maximum likelihood estimation for the probability of interaction as
well as the community membership of each actor.

In a different fashion, one can also use matrix approximation for block mod-
els. That is, the actors in the interaction matrix can be reordered in a form such
that those actors sharing the same community form a dense interaction block.
Based on the stochastic assumption, it follows that the community can be iden-
tified based on interaction matrix A via the following optimization [63]:

min
S,Σ

ℓ(A;STΣS) (3.9)

Ideally, S should be an cluster indicator matrix with entry values being 0 or
1, Σ captures the strength of between-community interaction, and ℓ is the loss
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function. To solve the problem, spectral relaxation of S can to be adopted.
If S is relaxed to be continuous, it is then similar to spectral clustering. If S
is constrained to be non-negative, then it shares the same spirit as stochastic
block models. This matrix approximation often resorts to numerical optimiza-
tion techniques like alternating optimization or gradient methods rather than
Bayesian inference.

Groups based on Modularity. Different from other criteria, modularity is
a measure which considers the degree distribution while calibrating the com-
munity structure. Consider dividing the interaction matrix A of n vertices and
m edges into k non-overlapping communities. Let si denote the community
membership of vertex vi, di represents the degree of vertex i. Modularity is
like a statistical test that the null model is a uniform random graph model, in
which one actor connects to others with uniform probability. For two nodes
with degree di and dj respectively, the expected number of edges between the
two in a uniform random graph model is didj/2m. Modularity measures how
far the interaction is deviated from a uniform random graph. It is defined as:

Q =
1

2m

∑

ij

[
Aij −

didj
2m

]
�(si, sj) (3.10)

where �(si, sj) = 1 if si = sj . A larger modularity indicates denser within-
group interaction. Note thatQ could be negative if the vertices are split into bad
clusters. Q > 0 indicates the clustering captures some degree of community
structure.

In general, one aims to find a community structure such that Q is maxi-
mized. While maximizing the modularity over hard clustering is proved to
be NP hard [11], a spectral relaxation of the problem can be solved effi-
ciently [42]. Let d ∈ Zn

+ be the degree vector of all nodes where Zn
+ is the

set of positive numbers of n dimensionality, S ∈ {0, 1}n×k be a community
indicator matrix, and the modularity matrix defined as

B = A− ddT

2m
(3.11)

The modularity can be reformulated as

Q =
1

2m
Tr(STBS) (3.12)

Relaxing S to be continuous, it can be shown that the optimal S is the top-k
eigenvectors of the modularity matrix B [42].

Groups based on Latent Space Model. Latent space model [26, 50, 24]
maps the actors into a latent space such that those with dense connections are



504 MANAGING AND MINING GRAPH DATA

likely to occupy the latent positions that are not too far away. They assume
the interaction between actors depends on the positions of individuals in the
latent space. A maximum likelihood estimation can be utilized to estimate the
position.

3.4 Hierarchy-Centric Community Detection

Another line of community detection is to build a hierarchical structure of
communities based on network topology. This facilitates the examination of
communities at different granularity. There are mainly three types of hierar-
chical clustering: divisive, agglomerative, and structure search.

Divisive hierarchical clustering. Divisive clustering first partitions the
actors into several disjoint sets. Then each set is further divided into smaller
ones until the set contains only a small number of actors (say, only 1). The
key here is how to split the network into several parts. Some partition methods
presented in previous section can be applied recursively to divide a community
into smaller sets. One particular divisive clustering proposed for graphs is
based on edge betweeness [45]. It progressively removes edges that are likely
to be bridges between communities. If two communities are joined by only
a few cross-group edges, then all paths through the network from nodes in
one community to the other community have to pass along one of these edges.
Edge betweenness is a measure to count how many shortest paths between pair
of nodes pass along the edge, and this number is expected to be large for those
between-group edges. Hence, progressively removing those edges with high
betweenness can gradually disconnects the communities, which leads naturally
to a hierarchical community structure.

Agglomerative hierarchical clustering. Agglomerative clustering begins
with each node as a separate community and merges them successively into
larger communities. Modularity is used as a criterion [15] to perform hierar-
chical clustering. Basically, a community pair should be merged if doing so
results in the largest increase of overall modularity, and the merge continues
until no merge can be found to improve the modularity. It is noticed that this
algorithm incurs many imbalanced merges (a large community merges with a
tiny community), resulting in high computational cost [60]. Hence, the merge
criterion is modified accordingly to take into consideration the size of commu-
nities. In the new scheme, communities of comparable sizes are joined first,
leading to a more balanced hierarchical structure of communities and to im-
proved efficiency.

Structure Search. Structure search starts from a hierarchy and then
searches for hierarchies that are more likely to generate the network. This idea
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first appears in [55] to maintain a topic taxonomy for group profiling, and then
a similar idea is applied for hierarchical construction of communities in social
networks. [16] defines a random graph model for hierarchies such that two ac-
tors are connected based on the interaction probability of their least common
ancestor node in the hierarchy. The authors generate a sequence of hierarchies
via local changes of the network and accept it proportional to the likelihood.
The final hierarchy is the consensus of a set of comparable hierarchies. The
bottleneck with structure search approach is its huge search space. A challenge
is how to scale it to large networks.

4. Community Structure Evaluation

In the previous section, we describe some representative approaches for
community detection. Part of the reason that there are so many assorted defini-
tions and methods, is that there is no clear ground truth information about the
community structure in a real world network. Therefore, different community
detection methods are developed from various applications of specific needs.
In this section, we depict strategies commonly adopted to evaluate identified
communities in order to facilitate the comparison of different community de-
tection methods.

Depending on network information, different strategies can be taken for
comparison:

Groups with self-consistent definitions. Some groups like cliques, k-
cliques, k-clans, k-plexes and k-cores can be examined immediately
once a community is identified. If the goal of community detection is
to enumerate all the desirable substructures of this sort, the total number
of retrieved communities can be compared for evaluation.

Networks with ground truth. That is, the community membership for
each actor is known. This is an ideal case. This scenario hardly presents
itself in real-world large-scale networks. It usually occurs for evalua-
tion on synthetic networks (generated based on predefined community
structures) [56] or a tiny network [42]. To compare the ground truth
with identified community structures, visualization can be intuitive and
straightforward [42]. If the number of communities is small (say 2 or 3
communities), it is easy to determine a one-to-one mapping between the
identified communities and the ground truth. So conventional classifi-
cation measures such as error-rate, F1-measure can be used. However,
when there are a plurality of communities, it may not be clear what a
correct mapping is. Instead, normalized mutual information (NMI) [52]
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can be adopted to measure the difference of two partitions:

NMI(�a, �b) =

∑k(a)

ℎ=1

∑k(b)

ℓ=1 nℎ,ℓ log

(
n⋅nℎ,l

n
(a)
ℎ ⋅n(b)

ℓ

)

√(∑k(a)

ℎ=1 n
(a)
ℎ log

na
ℎ
n

)(∑k(b)

ℓ=1 n
(b)
ℓ log

nb
ℓ
n

) (4.1)

where �a, �b denotes two different partitions of communities. nℎ,ℓ, n
a
ℎ,

nbℓ are, respectively, the number of actors simultaneously belonging to
the ℎ-th community of �a and ℓ-th community of �b, the number of
actors in the ℎ-th community of partition �a, and the number of actors
in the ℓ-th community of partition �b. NMI is a measure between 0 and
1 and equals to 1 when �a and �b are the same.

Networks with semantics. Some networks come with semantic or at-
tribute information of the nodes and connections. In this case, the iden-
tified communities can be verified by human subjects to check whether
it is consistent with the semantics. For instance, whether the community
identified in the Web is coherent to a shared topic [22, 15], whether the
clustering of coauthorship network captures the research interests of in-
dividuals. This evaluation approach is applicable when the community
is reasonably small. Otherwise, selecting the top-ranking actors as rep-
resentatives of a community is commonly used. This approach is quali-
tative and hardly can it be applied to all communities in a large network,
but it is quite helpful for understanding and interpretation of community
patterns.

Networks without ground truth or semantic information. This is the most
common situation, yet it requires objective evaluation most. Normally,
one resorts to some quantitative measures for evaluation. One common
measure being used is modularity [43]. Once we have a partition, we
can compute its modularity. The method with higher modularity wins.
Another comparable approach is to use the identified community as a
base for link prediction, i.e., two actors are connected if they belong to
the same community. Then, the predicted network is compared with the
true network, and the deviation is used to calibrate the community struc-
ture. Since social network demonstrates strong community effect, a bet-
ter community structure should predict the connections between actors
more accurately. This is essentially checking how far the true network
deviates from a block model based on the identified communities.
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5. Research Issues

We have now described some graph mining techniques for community de-
tection, a basic task in social network analysis. It is evident that community
detection, though it has been studied for many years, is still in pressing need
for effective graph mining techniques for large-scale complex networks. We
present some key problems for further research:

Scalability. One major bottleneck with community detection is scalabil-
ity. Most existing approaches require a combinatorial optimization for-
mulation for graph mining or eigenvalue problem of the network. Some
alternative techniques are being developed to overcome the barrier, in-
cluding local clustering [49] and multi-level methods [2]. How to find
out meaningful communities efficiently and develop scalable methods
for mega-scale networks remains a big challenge.

Community evolution. Most networks tend to evolve over time. How
to effectively capture the community evolution in dynamic social net-
works [56]? Can we find the members which act like the backbone of
communities? How does this relate to the influence of an actor? What
are the determining factors that result in community evolution [7]? How
to profile the characteristics of evolving communities[55]?

Usage of communities. How to utilize these communities for further
social network analysis needs more exploration, especially for those
emerging tasks in social media like classification [53], ranking, finding
influential actors [3], viral marketing, link prediction, etc. Community
structures of a social network can be exploited to accomplish these tasks.

Utility of patterns. As we have introduced, large-scale social networks
demonstrate some distinct patterns that are not usually observable in
small networks. However, most existing community detection methods
do not take advantage of the patterns in their detection process. How
to utilize these patterns with various community detection methods re-
mains unclear. More research should be encouraged in this direction.

Heterogeneous networks. In reality, multiple relationships can exist be-
tween individuals. Two persons can be friends and colleagues at the
same time. In online social media, people interact with each other in a
variety of forms resulting in a multi-relational (multi-dimensional) net-
work [54]. Some systems also involve multiple types of entities to in-
teract with each other, leading to multi-mode networks [56]. Analysis
of these heterogeneous networks involving heterogeneous actors or rela-
tions demands further investigation.
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The prosperity of social media and emergence of large-scale complex net-
works poses many challenges and opportunities to graph mining and social
network analysis. The development of graph mining techniques can facilitate
the analysis of networks in a much larger scale, and help understand human so-
cial behaviors. Meanwhile, the common patterns and emerging tasks in social
network analysis continually surprise us and stimulate advanced graph mining
techniques. In this chapter, we point out the converging trend of the two fields
and expect its healthy acceleration in the near future.
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