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Abstract

Feature selection (FS) is extensively studied in machine
learning. We often need to compare two FS algorithms
(A1, Az). Without knowing true relevant features, a
conventional way of evaluating A; and Aj is to evaluate
the effect of selected features on classification accuracy
in two steps: selecting features from dataset D using
A; to form D}, and obtaining accuracy using each D,
respectively. The superiority of A or A2 can be statis-
tically measured by their accuracy difference. To obtain
reliable accuracy estimation, k—fold cross-validation
(CV) is commonly used: one fold of data is reserved
in turn for test. FS may be performed only once at
the beginning and subsequently the results of the two
algorithms can be compared using CV; or FS can be
performed k-times inside the CV loop. At first glance,
the latter is the obvious choice for accuracy estimation.
We investigate in this work if the two really differ when
comparing two FS algorithms and provide findings of
bias analysis.

Introduction

Feature selection (FS) is the process of reducing dimen-
sionality by removing irrelevant features (Guyon & Elisse-
eff 2003). It is usually applied as a pre-processing step in
machine learning tasks. FS is employed in different appli-
cations with a variety of purposes: to overcome the curse
of dimensionality, to remove irrelevant and redundant fea-
tures (Blum & Langley 1997) thus improving classification
performance, to streamline data collection when the mea-
surement cost of attributes are considered (e.g., drug design
targeting at specific genes), to speed up the classification
model construction, and to help unravel and interpret the in-
nate structure of datasets (John, Kohavi, & Pfleger 1994). FS
algorithms broadly fall into two categories': the filter model
and the wrapper model (John, Kohavi, & Pfleger 1994). The
filter model relies on some intrinsic characteristics of data to
select features without involving classification learning; the
wrapper model, typically uses a classifier to evaluate feature
quality. The wrapper model is often computationally more
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"This work focuses on supervised FS. Unsupervised FS studies
how to select features without class labels (Dy & Brodley 2004).

expensive than the filter model, and its selected features are
biased toward the classifier used (Guyon & Elisseeff 2003).
A large number of filter algorithms have been proposed in
literature (Liu & Yu 2005). This work investigates evalua-
tion methods for FS algorithms of the filter model.

Feature Selection Evaluation

Feature selection evaluation aims to gauge the efficacy of a
FS algorithm. It boils down to the evaluation of its selected
features, and is an integral part of FS research. In evalua-
tion, it is often required to compare a new proposed feature
selection algorithm with existing ones. The evaluation tasks
would have been simple, if the ground truth (the true rele-
vant features) were known. However, this is almost never
the case for real-world data. Since we don’t have the ground
truth for real-world data, we resort to indirectly evaluating
the quality of selected features by measuring their effect on
classification learning.

Indirect Evaluation

As is well known, a classifier achieving good classification
performance on training data does not necessarily generalize
well on new test data, or the classifier might overfit the train-
ing data. Hence, k-fold cross validation (CV) or its variants
are widely adopted to separate training and test data. In this
process, data is split into k equal-sized folds. In each of the
k iterations of the CV loop, one fold is held out for testing
while the remaining £ — 1 folds are used for training the clas-
sifier. The averaged performance, typically accuracy?, is re-
ported. The labeling information of the test set should never
be used during classifier training. When incorporating FS
in classifier learning, we clearly should perform FS inside
the cross-validation loop (Method IN as shown in Figure 1).
That is, for each iteration, feature selection is applied to the
training set before classifier construction.

When treating FS as a pre-processing step for dimension-
ality reduction, would it be appropriate to separate FS from
classifier learning? That is, performing feature selection first
and then gauging the efficacy of the FS algorithm via CV
in comparison with the quality of selected features of some
baseline algorithm. This method performs FS outside the

?In this paper, we focus on accuracy. Other measurements can
be precision, recall, F-measure, AUC, etc.



[Fs ]

Fold i

Train

Figure 1: Method IN Figure 2: Method OUT

CV loop (Method OUT as shown in Figure 2)* This com-
monly used method was not questioned for a long time, un-
til the publication of (van 't Veer et al. 2002). In this work,
the authors used the full set of data instances to select genes
(features) and then perform CV to estimate classification ac-
curacy after FS. Upon its publication in Nature, it was criti-
cized for its “information leakage” from the test data*. After
revising their methodology to Method IN, the authors pub-
lished a Web supplement to their article, reporting a decrease
in CV accuracy from 83% to 73%.

At first glimpse, performing FS outside the CV loop
(OUT) is unacceptable as it is tantamount to peeking at the
hold-out test data. The “leakage” of label information from
the test data during FS will lead to an “optimistic” accuracy
estimate, which is also observed in (van 't Veer et al. 2002).
However, in comparing two FS algorithms, the leakage oc-
curs to both. So the question is.

Does this bias in accuracy estimation really matter
when comparing two feature selection algorithms?

A Closer Look into Method IN & OUT

Clearly, the quality of selected features is highly correlated
with the number of instances available during training. In
order to select good features, we should use all the avail-
able data. However, k-fold CV complicates the above as
it is essentially making an approximation that, by holding
out 1/k instances for testing, a comparison made using 90%
of the data (in case of 10-fold CV) can be generalized to a
comparison made using all the data. This approximation is
compulsory for classification evaluation because otherwise
we would not be able to ‘fairly’ measure accuracy, but may
be unnecessary for feature selection.

Method IN is holding out one fold for FS and may be
too conservative. Comparatively, method OUT performs FS
using all the instances. As it “peeks” at the label informa-
tion before evaluation, the classification performance may
be too optimistic. Since these biases can affect the results of
both algorithms under comparison, it is unclear which bias
would yield more accurate comparison results. Moreover,
holding out one fold for FS in method IN could exacerbate
the small sample problem with FS (Jain & Zongker 1997) as
in many applications the available data is just a small sample
of the whole population. A large variance in FS performance
can result from small samples. Method OUT alleviates this
problem by using all the available instances for FS.

In light of the above arguments, we conjecture that (1)
OUT may be too liberal in estimating accuracy since it uses

3This method seems a de facto one in many FS papers.
*Most notably (Molla et al. 2004) contains a detailed discus-
sion.

all available data for FS, and (2) IN may be too conservative
as it holds out one fold of data in FS. Recall that our goal is to
compare two feature selection algorithms. We are thus seek-
ing to answer the following questions: (1) Do IN and OUT
indeed have different bias? (2) Does this bias affect the out-
come of pair-wise comparison? (3) Which method should
be adopted when the number of samples are small/large? A
great number of FS algorithms have been proposed in liter-
ature, and the answers to these questions will determine if
some experimental results using either IN or OUT should
be reconsidered. Hence, it is important to evaluate the two
evaluation methods and determine which is more reliable.

Evaluating the Evaluation

Ultimately we seek to answer the question: which evalua-
tion method (IN or OUT) is more truthful in comparing two
feature selection algorithms? To answer this question, we
must know the ground truth about which method is truly
better. To obtain the ground truth we must compare the
two FS algorithms in a special experimental setup that does
not contain any of the controversial elements from CV and
methods IN and OUT. This special setup, called TRUTH,
is as follows: For a particular data, we create 100 training
and 100 test sets. This ensures a large sample. We further
ensure that these 200 sets are independent. Note that creat-
ing 200 independent sets would require a very large number
of instances. With real-world datasets there are simply not
enough instances to create such a setup. For this reason we
resort to using synthetic data to study the properties of IN
and OUT.

We use each of the 100 train set to perform feature selec-
tion using a pair of FS algorithms (A; and A;). We then
train the classifier on the resulting pair of data (composed of
only selected features). Finally we measure the accuracy of
the pair of trained classifiers (one for the subset of features
selected by A;, and one for As) on the corresponding test
set. At the end we have 100 paired measurements of accu-
racy for A; and A5. We perform a paired t-test to determine
whether A; is better than A, or if they are equivalent. Thus
this method (TRUTH) yields a conclusion (Erryrm) with
one of three possible values: Win (A; is better), Loss (As is
better) or Draw (there is no significant difference).

We also perform CV twice on each of the 100 training
sets, one time using method IN and one time using method
OUT. We use the same folds for both methods. We then
perform a paired t-test on the results of each CV experi-
ment. This allows us to obtain 100 comparison conclusion
for OUT (Eopyr) and 100 for IN (Eoy7) about which FS al-
gorithm is better or if they are the same. Ultimately we have
100 paired conclusions of IN and OUT and a single TRUTH.
Based on this data, we can perform a statistical significance
test to determine which method is more truthful.

We generated two data sources with continuous feature
values, one linearly separable and the other non-linearly
separable with feature values independently drawn from a
uniform distribution. Both have 60 features only 10 of
which are relevant. We also generated three discrete data
sources according to the specification for the MONKS’
problems (Thrun ef al. 1991). We added Gaussian random



Table 1: N and F in Synthetic Data Experiments.

Dataset #Instances (V) #Features (F')
Contin {125, 250, 375, 500, 13,5, 10,
Onunuous | go5. 750, 875, 1000} 20,40}
Discret {40, 60, 80, 100, 11,2,3,
screte 120, 140, 160, 180} 4,5}
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Figure 3: Average accuracy (as determined by each evalu-
ation method: IN, OUT and TRUTH) of the 1NN classifier
on non-linear synthetic data when 10 features are selected
by FCBE.

noise to the target value for the continuous data before bina-
rizing it into two classes. Noise was added to MONK3 ac-
cording to the MONK’s problems specification. For each ex-
periment, we fixed the number of training instances (IV), the
number of features selected by the FS algorithms (F’), the
classifier and the pair of FS algorithms. We repeated the ex-
periment with different values for ' and N, with four differ-
ent classifiers: SVM, Naive Bayes (NBC), Nearest Neighbor
(INN) and decision tree (C4.5); and three FS algorithms:
ReliefF (Kononenko 1994), FCBF (Yu & Liu 2003), and in-
formation gain (IG).

The different values for N and F' are shown in Table 1.
For the continuous data, the number of relevant features (R)
is 10, so we vary F' from R/4 to 4R. The MONK data only
contained 6 features so we included all possible values of
F'. The values for N were selected because we observed
that the accuracy for most models stabilized at around 500
instance so we let NV vary from 125 to 1,000. Similarly for
the MONK data marginal accuracy dropped off at around
100 instances so N varies from 40 to 180.

Accuracy Estimation Bias

We first look at whether IN and OUT indeed both demon-
strate a bias. The results show that OUT often over-estimates
the true accuracy, while IN often under-estimates the true
accuracy. For example, Figure 3 shows a plot of average ac-
curacy for IN, OUT and TRUTH in a particular case (INN
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Figure 4: Normalized bias for IN and OUT on non-linear
synthetic data averaged over all factors

classifier on non-linear synthetic data when 10 features are
selected by FCBF). Note that the TRUTH accuracy curve is
enveloped by IN below and OUT above. We observed sim-
ilar trends for other classifiers, feature selection algorithms
and number of features.

Formally, bias is defined as the expected value for the dif-
ference between an estimator and the true value of the pa-
rameter being estimated. Suppose we are trying to estimate

some parameter 6 using some estimator . In such a case 6’s
bias is given by:

Bias = E( — 0)
where E is the expected value (average over many esti-
mates). If 0 has a tendency to under-estimate, the bias will
be negative, and if it has a tendency to over-estimate, the
bias will be positive. For accuracy estimation, 6 is the true

mean accuracy and 6 is the average accuracy obtained by
CV after IN or OUT. Unfortunately we do not know the true
mean accuracy. To approximate the bias, we can use the
values from method TRUTH but the problem is that method
TRUTH yields a distribution, not a fixed value. To deal with
this issue we utilized the following method.

For each experiment we generated 100 datasets, yielding
100 TRUTH accuracy estimates. We also performed 10-fold
CV on each of these datasets, yielding 100 sets of 10 ac-
curacy estimates for IN and another 100 sets for OUT. To
simulate the bias we perform a two-sample hypothesis test,
comparing each of the 100 sets of 10 accuracy estimates with
the 100 accuracy estimates obtained using method TRUTH.
If the null hypothesis is rejected we conclude that the CV
results are biased, otherwise we assume that cross valida-
tion demonstrated no bias. We used the version of the Stu-
dent’s t-test intended for use with samples with unequal vari-
ances (L.Welch 1947). We observed that the variance is
much lower for TRUTH, likely due to the much larger sam-
ple size and the much larger test set; and OUT has slightly
lower variance than IN. We track the bias for IN and OUT
on each CV experiment and average them over all 100 sets.
The obtained bias is an absolute accuracy bias, in order to
make it comparable across different factors such as number
of instances, we normalized the bias by dividing it by the
average TRUTH accuracy. We observed that OUT indeed
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Figure 5: Results for comparing FCBF vs. ReliefF on the
synthetic linear data. According to the binomial test: I - IN
was better, O - OUT was better. According to the method
TRUTH: black - ReliefF is better, white - FCBF is better,
gray - there is no difference.

demonstrated a positive bias, while IN demonstrated a nega-
tive bias. Figure 4 shows the normalized bias for non-linear
synthetic data averaged over all factors. Notice that the bias
for IN is consistently small (below 1%), while the bias for
OUT is quite large for small number of instances. We ob-
served similar trends with other data sources. IN’s bias was
never observed to exceed 5% while OUT’s bias reached 20%
for some cases!

Which Method is More Truthful?

We now look at the central question about which method
(IN or OUT) is better when comparing two feature selection
algorithms.  Since our experimental setup yielded 100
paired conclusions for IN and OUT, we further determined
the truth about which of the two FS algorithms is better. In
order to determine if one method is significantly better than
the other, we count the frequency of two events:
I : the number of times that IN is truthful but OUT is not
O : the number of times that OUT is truthful but IN is not
If IN and OUT are the same we would expect these
two events to be opposing events of equal probability in
Bernoulli trials. We assume that IN and OUT are the same:
Hy: Eriny=Four
Given a particular pair of frequencies for I and O, we can
calculate the exact probability that these frequencies came
from the described binomial process by summing over one
tail of the binomial distribution.

_min(I,O) 140 1 k 1 I+0—k

If this exact probability (p) that the null hypothesis is true is
sufficiently low we can reject the null hypothesis in favor of
one of these alternatives:

. - Ern betterthan Eoyr if (p <0.5a) A (I > O)
1Y Eour betterthan Ery if (p < 0.5a) A (O > 1)

Table 2: Confusion Matrices for comparing FS algorithms
on Synthetic Data. I - IN is better, O - OUT is better, S
- no significant difference between IN and OUT, W - Win
(the first FS algorithm is better), L - Loss (the second FS
algorithm is better), D - Draw (no significant difference).

FCBF vs. FCBEF vs. ReliefF vs.
1G ReliefF 1G
I S (0] | S (0] | S (0]
Linear

W01 0 4 14 0 0 36 21

D [0]153]0 10 | 75 0 9 73 0

L [0]6 0 0 35 22 4 17 0

Non-Linear

WI[O0TO 0 2 15 0 0 54 13

D 0] 1540 12 | 63 0 12 | 63 0

L [0]6 0 1 54 13 2 16 0
MONK1

W I[o0 0 0 43 1 5 47 15

D |1]151]0 0 47 0 49

L [0 0 6 48 15 0 43 1
MONK?2

W01 0 0 7 0 1 33 5

D 0] 158 |0 2 112 | 0 4 110 | O

L [0 0 2 33 4 0 7 0
MONK3

WIl0T]4 0 7 0 0 6 0

D [0]153]0 1 146 | 0 0 144 | 1

L [0]3 0 6 0 0 9 0

After compiling the results, it is interesting to discover
that neither IN nor OUT was superior in all cases. We
present the results for comparing FCBF with ReliefF on
the synthetic linear data in Figure 5. This figure shows the
results for all classifiers, and all the varied numbers of in-
stances and features. Within each classifier, the number of
instances increases from top to bottom and the number of se-
lected features increases from left to right. The cells marked
with O are cases where the binomial test indicated that OUT
was the better method, while the cells marked with I are
cases where the binomial test indicated that IN was the bet-
ter method. As we can see there are many cases where OUT
was the better method. We overlayed this figure with the
TRUTH conclusion and discovered a pattern. In this figure
the black cells are cases where FCBF was in fact the better
method, white cells are cases where ReliefF was in fact the
better method and gray cells are cases where there was no
significant difference. As you can see there are more O’s in
the white regions, indicating that when ReliefF is the win-
ner, OUT is better at detecting it, and there are more I’s in the
gray and black regions, indicating that when ReliefF is the
loser or is the same as its competitor, IN is better at detect-
ing it. We observed a similar trend with respect to ReliefF
in other data sources except for MONK3. Table 2 shows a
summary of these results.

The results indicate that some FS algorithms are sensitive
to the evaluation method and some are not. When compar-
ing FCBF and IG, IN and OUT were determined to be the
same in nearly all cases and across all data sources; however,
when comparing ReliefF with another algorithm, it is more
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Figure 6: An example demonstrating the effect of bias im-
balance. (SVM accuracy on 125 instances of synthetic linear
data suing FCBF and ReliefF to select 20 features)

likely that one method (IN or OUT) is better than the other.
In cases where there was in fact no difference between the
two FS algorithms, OUT was more likely to be wrong by
saying that there is a difference. An even more interesting
finding is that when there was a difference between the two
FS algorithms, no single evaluation method was consistently
better than the other. Instead, we observed an asymmetric
pattern, where the sensitive FS algorithm (ReliefF) seemed
to consistently favor one evaluation method (OUT) over the
other, when compared against different FS algorithms and
across different data sources. Conversely when this algo-
rithm lost to its competitor, the other evaluation method (IN)
was superior across different factors. We further observed
that for each outcome of method TRUTH, the superiority of
one method over another does not have any correlation with
the number of instances. The only exception was the case
of a draw between two algorithms. In this case we found
that even though IN was more often the better method its
superiority decreased with increasing instances.

How Can OUT be better?

We have demonstrated that both IN and OUT are biased in
accuracy estimation, but OUT’s bias is often larger in mag-
nitude than that of IN. The mystery then becomes how can
OUT ever be the better method? We examined this issue
more closely and discovered that the superiority of IN or
OUT has less to do with their bias and more to do with their
bias imbalance. We define bias imbalance as the absolute
difference in the bias that a method exerts on the two FS al-
gorithms under comparison. When two FS algorithms are
in fact different, a bias imbalance can have a positive effect
when the bias imbalance causes the measured mean accu-
racy rates to be driven further apart; or it can have a negative
effect when the bias imbalance causes the mean accuracy
rates to be driven closer together. Generally, we would like
the bias imbalance to be as small as possible, as to ensure
accurate comparison of two FS algorithms.

Consider the example shown in Figure 6: with OUT,

TRUTH FCBF >< ReliefF

ouT

T

Accuracy

Figure 7: SVM accuracy on 1000 instances of synthetic lin-
ear data using FCBF and ReliefF to select 20 features

FCBF and ReliefF are visibly separable, whereas with IN
a hypothesis test may incorrectly conclude that they come
from the same distribution. The vertical lines show the
means, also summarized in Table 3. Though OUT shows
a larger bias than IN, particularly for ReliefF, IN shows a
larger bias imbalance, making OUT the better method in
this case. Remarkably, such bias imbalance patterns seem
consistent across the data, namely OUT having a lower bias
imbalance when ReliefF is superior and IN having the lower
imbalance when ReliefF is inferior or equivalent to its com-
petitor. Figure 7 shows an example where IN and OUT both
arrive at the correct conclusion. Although IN’s mean dif-
ference of FCBF and ReliefF is smaller than that in Figure 6
(~ 1% as compared to ~ 4%), the two distributions are more
distinguishable because (1) bias imbalance is not very large,
and (2) their variances are smaller (likely due to a larger
number of instances).

Related Work

Reunanen presents findings about evaluation methods for FS
when using wrapper models, pointing out that the wrapper
accuracy on training data using leave-one-out CV is not nec-
essarily consistent with that on the independent fest set. It
does not address issues specific to pairwise comparison of
FS algorithms, and it studies only wrapper models. Our
work concentrates on filter models. We study how to con-
duct pairwise comparison of FS algorithm using 10-fold CV
with paired t-test. 10-fold CV is recommended as it tends
to provide less biased estimation of the accuracy (Kohavi
1995). As suggested in (Salzberg 1997), when compar-
ing two or more learning algorithms, appropriate hypothe-
sis testing should be performed instead of comparing only
average accuracy of k-fold CV. Paired t-test is one such test
taking into account the variance in accuracy estimates (Di-
etterich 1998), and is often used in machine learning.
Alternatives to 10-fold CV can be found in literature: (a)
(Dietterich 1998) recommends 5 x 2-fold CV for its low
Type I error; (b) Since a high degree of sample overlap
in a typical CV can lead to an underestimated variance of



Table 3: Mean Accuracy and Bias Imbalance Summary for Figure 6

FCBF ReliefF t-test ...
Accuracy | Bias Accuracy | Bias concludes is truthful? | Bias Imbalance
OouT 0.8156 0.0098 | 0.8619 0.0183 | ReliefF better | Yes 0.0085
TRUTH | 0.8058 n/a 0.8436 n/a ReliefF better | n/a n/a
IN 0.8028 -0.003 | 0.8274 -0.0162 | No difference | No 0.0132

performance difference, (Nadeau & Bengio 1999) proposes
to correct the sample variance by scaling it with a ratio
based on the number of instances in training and test data;
(c)(Bouckaert 2003) suggests 10 x 10-fold CV followed by
adjusted paired t-test on the resulting 100 samples using 10
degrees of freedom; and (d) (Bouckaert 2004) demonstrates
that “sorted runs sampling” scheme followed with t-test out-
performs other evaluation schemes if the replicability of an
evaluation result is considered. In theory, one can replace
10-fold CV with any one of the above. We focus on 10-
fold CV because no matter what kind of bias each of the
above methods has, these biases would affect the ranking of
compared algorithms in a similar way. For example, 5 x 2-
fold CV makes each training fold smaller, IN could be more
conservative than using 10-fold CV; as OUT still uses the
full training data for FS, it remains optimistic. The fact that
many past FS studies employed 10-fold CV in their evalua-
tion has also influenced our choice of 10-fold CV.

Conclusions

This study results in the following findings: (1) IN and OUT
have different biases, and bias is not a major factor in de-
termining whether IN or OUT is more truthful in pair-wise
comparison; (2) some FS algorithms are sensitive to FS eval-
uation methods; (3)for the greater majority of cases, IN and
OUT are not significantly different; (4) IN and OUT al-
most never give completely opposite conclusions; (5) when
two FS algorithms perform identically, IN is often a better
method to indicate so; and (6) for other two cases where (a)
Aj is better and (b) A is better, if IN is better for case (a),
then OUT is better for case (b).

If the end goal of the pair-wise comparison is to show that
a new algorithm is superior to some baseline algorithm, and
we wish to minimize our chance of making a mistake, we
recommend using IN. Since we do not know which of the
three outcomes (A; is better or Ao is better or there is no
difference between A; and As) is most probable, assuming
that they are equally likely, we recommend method IN to
get the edge in two out of the three cases. Before running
experiments with real-world data, we can also consider first
running experiments with synthetic data using two FS algo-
rithms we plan to compare, as to observe their sensitivity to
the evaluation methods.

On the other hand, if our end goal is to select the best
subset of features for a particular dataset, we recommend to
run both methods IN and OUT, trust the method indicating
that one algorithm is better than the other, and use that better
algorithm to select features using the entire dataset. In the
worst case scenario, the selected features will be no worse
than the subset selected by the alternative algorithm.
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