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Abstract

Multi-task learning (MTL) aims to improve
generalization performance by learning mul-
tiple related tasks simultaneously. In this
paper, we consider the problem of learn-
ing shared structures from multiple related
tasks. We present an improved formulation
(iASO) for multi-task learning based on the
non-convex alternating structure optimiza-
tion (ASO) algorithm, in which all tasks are
related by a shared feature representation.
We convert iASO, a non-convex formulation,
into a relaxed convex one, which is, however,
not scalable to large data sets due to its com-
plex constraints. We propose an alternating
optimization (cASO) algorithm which solves
the convex relaxation efficiently, and further
show that cASO converges to a global op-
timum. In addition, we present a theoretical
condition, under which cASO can find a glob-
ally optimal solution to iASO. Experiments
on several benchmark data sets confirm our
theoretical analysis.

1. Introduction

The problem of multi-task learning (Caruana, 1997)
has recently received broad attention in areas such as
machine learning, data mining, computer vision, and
bioinformatics (Heisele et al., 2001; Ando & Zhang,
2005; Ando, 2007; Xue et al., 2007; Yu et al., 2007;
Argyriou et al., 2008). Multi-task learning aims to
improve generalization performance by learning from
multiple related tasks. This can be achieved by learn-
ing the tasks simultaneously, and meanwhile exploiting
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their intrinsic relatedness, based on which the informa-
tive domain knowledge is allowed to be shared across
the tasks, thus facilitating individual task learning. It
is particularly desirable to share such knowledge across
the tasks when there are a number of related tasks but
only limited training data for each one is available.

Multi-task learning has been investigated by many
researchers from different perspectives such as shar-
ing hidden units of neural networks among similar
tasks (Caruana, 1997; Baxter, 2000), modeling task
relatedness using the common prior distribution in hi-
erarchical Bayesian models (Bakker & Heskes, 2003;
Schwaighofer et al., 2004; Yu et al., 2005; Zhang et al.,
2005), learning the parameters of Gaussian Process co-
variance from multiple tasks (Lawrence & Platt, 2004),
extending kernel methods and regularization networks
to multi-task learning (Evgeniou et al., 2005), and
multi-task learning with clustered tasks (Jacob et al.,
2008). Recently, there is growing interest in studying
multi-task learning in the context of feature learning
and selection (Ando & Zhang, 2005; Obozinski et al.,
2006; Amit et al., 2007; Argyriou et al., 2008). Specif-
ically, Ando and Zhang (2005) propose the alternat-
ing structure optimization (ASO) algorithm to learn
the predictive structure from multiple tasks. In ASO,
a separate linear classifier is trained for each of the
tasks and dimension reduction is applied on the predic-
tor space, finding low-dimensional structures with the
highest predictive power. This framework has been ap-
plied successfully in several applications (Ando, 2007;
Quattoni et al., 2007). However, it is non-convex and
the alternating optimization procedure is not guaran-
teed to find a global optimum (Ando & Zhang, 2005).

In this paper, we consider the problem of learning a
shared structure from multiple related tasks following
the approach in (Ando & Zhang, 2005). We present an
improved ASO formulation (called iASO) using a novel
regularizer. The improved formulation is non-convex;
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we show that it can be converted into a (relaxed) con-
vex formulation, whose globally optimal solution ap-
proximates the one to iASO. However, this convex for-
mulation is not scalable to large data sets due to its
positive semidefinite constraints. We propose a con-
vex alternating structure optimization (called cASO)
algorithm to solve the convex relaxation efficiently, in
which the optimization variables are updated itera-
tively. The proposed cASO algorithm is similar in
spirit to the block coordinate descent method (Bert-
sekas, 1999) in unconstrained optimization, and it can
be shown to converge to a global optimum of the con-
vex relaxation. In addition, we present a theoretical
condition, under which cASO finds a globally optimal
solution to iASO. We have performed experiments on
benchmark data sets. The reported experimental re-
sults are consistent with our theoretical analysis. Re-
sults also demonstrate the effectiveness of the proposed
multi-task learning algorithm.

Notations Denote Nn = {1, · · · , n}. Let Sd
+ (Sd

++)
be the subset of positive semidefinite (positive definite)
matrices. Denote A ¹ B if and only if B−A is positive
semidefinite. Let tr(X) be the trace, and X−1 be the
inverse of a matrix X.

2. Multi-Task Learning Framework

Assume that we are given m supervised (binary-
class) learning tasks. Each of the learning tasks
is associated with a predictor f` and training data
{(x`

1, y
`
1), · · · , (x`

n`
, y`

n`
)} ⊂ Rd × {−1, 1} (` ∈ Nm).

We focus on linear predictors f`(x) = uT
` x, where u`

is the weight vector for the `th task.

Ando and Zhang (2005) propose the alternating struc-
ture optimization (ASO) algorithm for learning predic-
tive functional structures from multiple related tasks,
that is, learning all m predictors {f`}m

`=1 simultane-
ously by exploiting a shared feature space in a simple
linear form of low-dimensional feature map Θ across
the m tasks. Formally, the prediction function f` can
be expressed as:

f`(x) = uT
` x = wT

` x + vT
` Θx, (1)

where the structure parameter Θ takes the form of an
h×d matrix with orthonormal rows, i.e., ΘΘT = I, and
u`, w`, and v` are the weight vectors for the full feature
space, the high-dimensional one, and the shared low-
dimensional one, respectively. Mathematically, ASO
can be formulated as the following optimization prob-
lem:

min
{u`,v`},ΘΘT=I

m∑

`=1

(
1
n`

n∑̀

i=1

L(uT
` x`

i , y
`
i ) + α‖w`‖2

)
, (2)

where L is the loss function, ‖w`‖2 is the regularization
term (w` = u`−ΘTv`) controlling the task relatedness
among m tasks, and α is the pre-specified parameter.

The optimization problem in Eq. (2) is non-convex due
to its orthonormal constraints and the regularization
term in terms of u`, v`, and Θ (the loss function L is
assumed to be convex). We present an improved ASO
formulation (called iASO) given by:

(F0) min
{u`,v`},ΘΘT=I

m∑

`=1

(
1
n`

n∑̀

i=1

L(uT
` x`

i , y
`
i )+g`(u`, v`,Θ)

)
,(3)

where g`(u`, v`, Θ) is the regularization function de-
fined as:

g`(u`, v`, Θ) = α‖u` −ΘTv`‖2 + β‖u`‖2. (4)

The regularization functions in Eq. (4) controls the
task relatedness (via the first component) as well as
the complexity of the predictor functions (via the sec-
ond component) as commonly used in traditional reg-
ularized risk minimization formulation for supervised
learning. Note that α and β are pre-specified coeffi-
cients, indicating the importance of the corresponding
regularization component. For simplicity, we use the
same α and β parameters for all tasks. However, the
discussion below can be easily extended to the case
where α and β are different for different tasks.

The iASO formulation (F0 in Eq. (3)) subsumes sev-
eral multi-task learning algorithms as special cases: it
reduces to the ASO algorithm in Eq. (2) by setting
β = 0 in Eq. (4); and it reduces to m independent
support vector machines (SVM) by setting α = 0. It
is worth noting that F0 is non-convex. In the next
section, we convert F0 into a (relaxed) convex formu-
lation, which admits a globally optimal solution.

3. A Convex Multi-Task Learning
Formulation

In this section, we consider a convex relaxation of the
non-convex problem F0 (iASO) in Eq. (3).

The optimal {v`}m
`=1 to F0 can be expressed in the

form of a function on Θ and {u`}m
`=1. Let U =

[u1, · · · , um] ∈ Rd×m and V = [v1, · · · , vm] ∈ Rh×m.
It can be verified that g`(u`, v`, Θ) in Eq. (4) is mini-
mized when v` = Θu` (` ∈ Nm), and hence V = ΘU .
Therefore we can denote

G0(U, Θ) = min
V

m∑

`=1

g`(u`, v`, Θ)

= α tr
(
UT

(
(1 + η)I −ΘTΘ

)
U

)
, (5)
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where η = β/α > 0. Moreover, it can be verified that
the following equality holds

(1 + η)I −ΘTΘ = η (1 + η)
(
ηI + ΘTΘ

)−1
. (6)

We can then reformulate G0(U, Θ) in Eq. (5) into an
equivalent form given by

G1(U,Θ) = α η (1 + η) tr
(
UT

(
ηI + ΘTΘ

)−1
U

)
.(7)

Since the loss term in Eq. (3) is independent of {v`}m
`=1,

F0 can be equivalently transformed into the following
optimization problem F1 with optimization variables
Θ and U as:

(F1) min
U,ΘΘT=I

m∑

`=1

(
1
n`

n∑̀

i=1

L(uT
` x`

i , y
`
i )

)
+ G1(U,Θ),(8)

where G1(U,Θ) is defined in Eq. (7).

3.1. Convex Relaxation

The orthonormality constraints in Eq. (8) is non-
convex, so is the optimization problem F1. We propose
to convert F1 into a convex formulation by relaxing its
feasible domain into a convex set. Let the set Me be
defined as:

Me =
{
Me | Me = ΘTΘ, ΘΘT = I, Θ ∈ Rh×d

}
. (9)

It has been shown in (Overton & Womersley, 1993)
that the convex hull (Boyd & Vandenberghe, 2004) of
Me can be precisely expressed as the convex set Mc

given by

Mc =
{
Mc | tr(Mc) = h, Mc ¹ I, Mc ∈ Sd

+

}
, (10)

and each element in Me is referred to as an extreme
point of Mc. Since Mc consists of all convex com-
binations of the elements in Me, Mc is the smallest
convex set that contains Me, and hence Me ⊆Mc.

To convert the non-convex problem F1 into a convex
formulation, we replace ΘTΘ with M in Eq. (8), and
relax the (feasible) problem domain to a convex set
based on the relationship between Me and Mc pre-
sented above; this results in a convex formulation F2

defined as:

(F2) min
U,M

m∑

`=1

(
1
n`

n∑̀

i=1

L(uT
` x`

i , y
`
i )

)
+ G2(U,M)

subject to tr(M) = h, M ¹ I, M ∈ Sd
+, (11)

where G2(U,M) is defined as:

G2(U,M) = α η (1 + η) tr
(
UT (ηI + M)−1

U
)

. (12)

Note that F2 is a convex relaxation of F1 since the opti-
mal M to F2 is not guaranteed to occur at the extreme
points of Mc. The optimal Θ to F1 can be approxi-
mated using the first h eigenvectors (corresponding to
the largest h eigenvalues) of the optimal M computed
from F2.

The convexity in F2 can be readily verified. We
add variables {t`}m

`=1 and enforce uT
` (ηI + M)−1u` ≤

t` (∀` ∈ Nm); it follows from the Schur complement
Lemma (Golub & Loan, 1996) that we rewrite F2 as:

(F3) min
U,M,{t`}

m∑

`=1

(
1
n`

n∑̀

i=1

L(uT
` x`

i , y
`
i )

)
+αη(1 + η)

m∑

`=1

t`

subject to
(

ηI + M u`

uT
` t`

)
º 0, ∀` ∈ Nm,

tr(M) = h, M ¹ I, M ∈ Sd
+. (13)

Given that the loss function L is convex, the opti-
mization problem F3 is convex. However, it is not
scalable to high-dimensional data (with a large d) due
to its positive semidefinite constraints. If L is the SVM
hinge loss, F3 is a semidefinite program (SDP) (Boyd
& Vandenberghe, 2004). Note that many off-the-shelf
optimization solvers such as SeDuMi1 can be used for
solving SDP, which can only handle several hundreds
of optimization variables.

4. Convex Alternating Structure
Optimization

The optimization problem F3 in Eq. (13) is convex,
thus resulting in a globally optimal solution. However,
this formulation does not scale well in practice. In this
section, we propose a convex alternating structure op-
timization (called cASO) algorithm to efficiently solve
the optimization problem F2 in Eq. (11). cASO is
similar to the block coordinate descent method (Bert-
sekas, 1999), in which one of the two optimization vari-
ables (U and M) is fixed, while the other one can be
optimized in terms of the fixed one. The pseudo-code
of the cASO algorithm is presented in Algorithm 1.

4.1. Computation of U for a Given M

For a given M , the optimal U can be computed by
solving the following problem:

min
U

m∑

`=1

(
1
n`

n∑̀

i=1

L(uT
` x`

i , y
`
i ) + ĝ(u`)

)
, (14)

where ĝ(u`) = α η (1 + η) tr
(
uT

` (ηI + M)−1
u`

)
.

Given any convex loss function L, we can verify that
1http://sedumi.ie.lehigh.edu/
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Algorithm 1 cASO for multi-task learning
Input: {(x`

i , y
`
i )}, i ∈ Nn`

, ` ∈ Nm, h ∈ N.
Output: U , V , and Θ.
Parameter: α and β.
Initialize M subject to the constraints in Eq. (11).
repeat

Update U via Eq. (14).
Compute the SVD of U = P1ΣPT

2 .
Update M via Eq. (17) and Theorem 4.1.

until convergence criterion is satisfied.
Construct Θ using the top h eigenvectors of M .
Construct V as V = ΘU .
Return U , V and Θ.

the objective function in Eq. (14) is strictly convex,
and hence this optimization problem admits a unique
minimizer. Note that if L is the SVM hinge loss, the
problem in Eq. (14) decouples into m independent
quadratic programs (QP), thus the optimal {u`}m

`=1

can be computed separately.

4.2. Computation of M for a Given U

For a given U , the optimal M can be computed by
solving the following problem:

min
M

tr
(
UT (ηI + M)−1

U
)

subject to tr(M) = h,M ¹ I,M ∈ Sd
+. (15)

This problem can be recast into an SDP problem,
which is computationally expensive to solve. We pro-
pose an efficient approach to find its optimal solution,
in which we only solve a simple eigenvalue optimiza-
tion problem.

4.2.1. Efficient Computation of M

Given any U ∈ Rd×m in Eq. (15), let U = P1ΣPT
2 be

its SVD (Golub & Loan, 1996), where P1 ∈ Rd×d and
P2 ∈ Rm×m are orthogonal, and rank(U) = q. Note
that in general q ≤ m ≤ d. It follows that

Σ = diag(σ1, · · · , σm) ∈ Rd×m,

σ1 ≥ · · · ≥ σq > 0 = σq+1 = · · · = σm. (16)

We consider the following convex optimization prob-
lem (Boyd & Vandenberghe, 2004):

min
{γi}q

i=1

q∑

i=1

σ2
i

η + γi

subject to
q∑

i=1

γi = h, 0 ≤ γi ≤ 1, ∀i ∈ Nq, (17)

where {σi} are the singular values of U defined in
Eq. (16). The optimal {γ∗i }q

i=1 to Eq. (17) must satisfy
γ∗1 ≥ γ∗2 · · · ≥ γ∗q . Hence

1
η + γ∗1

≤ 1
η + γ∗2

≤ · · · ≤ 1
η + γ∗q

. (18)

This can be verified by contradiction: assuming γ∗i <
γ∗i+1 and given σi > σi+1, we can construct another
feasible solution by switching γ∗i and γ∗i+1, and ob-
tain a smaller objective value in Eq. (17). Note that
the problem in Eq. (17) can be solved via many exist-
ing algorithms such as the projected gradient descent
method (Boyd & Vandenberghe, 2004).

We show that the optimal solution to Eq. (15) can
be obtained by solving Eq. (17). We first present the
following lemma, which will be useful for proving the
theorem followed.
Lemma 4.1. For any matrix Z ∈ Sd

+, let Z = Û Σ̂zÛ
T

be its SVD, where Û ∈ Rd×d is orthogonal, Σ̂z =
diag(σ̂1, · · · , σ̂d), and σ̂1 ≥ · · · ≥ σ̂d ≥ 0. Let {Zi}d

i=1

be the diagonal entries of Z, and Π = {π1, · · · , πp} ⊆
Nd be any integer subset with p distinct elements.
Then

∑p
i=1 Zπi ≤

∑p
j=1 σ̂j.

Proof. Denote the i-th row-vector of Û ∈ Rd×d by
Ûi = [ûi1, · · · , ûid]. For any integer subset Π =
{π1, · · · , πp}, we have

0 ≤
p∑

k=1

û2
πkj ≤ 1,

d∑

j=1

û2
πkj = 1, ∀j ∈ Nd, ∀k ∈ Np.

The i-th diagonal entry of Z can be expressed as Zi =∑d
j=1 σ̂j û

2
ij . It follows that

p∑

i=1

Zπi =
d∑

j=1

(
σ̂j û

2
π1j + · · ·+ σ̂j û

2
πpj

)

=
d∑

j=1

p∑

k=1

(
σ̂j û

2
πkj

)
=

d∑

j=1

(
σ̂j

p∑

k=1

û2
πkj

)
≤

p∑

j=1

σ̂j ,

where the last equality (the maximum) above is at-
tained when the set {û2

π1j , · · · , û2
πpj} (∀j ∈ Nd) has

only one non-zero element of value one or p = d. This
completes the proof of this lemma.

We summarize the main result of this subsection in the
following theorem.

Theorem 4.1. Let {λ∗i }q
i=1 be optimal to Eq. (17),

and denote Λ∗ = diag(λ∗1, · · · , λ∗q , 0) ∈ Rd×d. Let
P1 ∈ Rd×d be orthogonal consisting of the left singular
vectors of U . Then M∗ = P1Λ∗PT

1 is an optimal so-
lution to Eq. (15). Moreover, the problem in Eq. (17)
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attains the same optimal objective value as the one in
Eq. (15).

Proof. For any feasible M in Eq. (15), let M = QΛQT

be its SVD, where Q ∈ Rd×d is orthogonal, Λ =
diag(λ1, · · · , λd), and λ1 ≥ · · · ≥ λd ≥ 0. The problem
in Eq. (15) can be rewritten as:

min
Q,Λ

tr
(
(ηI + Λ)−1

QTP1ΣΣTPT
1 Q

)

subject to QQT = QTQ = I, Λ = diag(λ1, · · · , λd),∑d
i=1 λi = h, 1 ≥ λ1 ≥ · · · ≥ λd ≥ 0, (19)

where Σ = diag(σ1, · · · , σq, 0) is defined in Eq. (16).
Note that the reformulated problem in Eq. (19) is
equivalent to the one in Eq. (15) and has two sepa-
rate optimization variables Q and Λ.

We show that the optimization variable Q can be fac-
tored out from Eq. (19). Let D = QTP1ΣΣTPT

1 Q and
denote its diagonal entries by {Di}d

i=1. It follows from
Eq. (16) that D is a positive semidefinite matrix with
non-zero singular values {σ2

i }q
i=1. Given any feasible

Λ in Eq. (19), we have

min
QTQ=QQT=I

tr
(
(ηI + Λ)−1

QTP1ΣΣTPT
1 Q

)

= min
D∈Sd

+:D∼ΣΣT

d∑

i=1

Di

η + λi
, (20)

where D ∼ ΣΣT indicates that the eigenvalues of D
are given by the diagonal elements of ΣΣT, and the
equality above means that these two problems attain
the same optimal objective value. Following the non-
decreasing order of 1/(η+λi) (i ∈ Nd) and

∑p
i=1 Dπi ≤∑p

j=1 σ2
j for any integer subset {πi}p

i=1 (Lemma 4.1),
we can verify that the optimal objective value to
Eq. (20) is given by

q∑

i=1

σ2
i

η + λi
+

d∑

i=q+1

0
η + λi

=
q∑

i=1

σ2
i

η + λi
, (21)

where this optimum can be attained when QTP1 =
I (Golub & Loan, 1996) and D = ΣΣT. It follows
from Eq. (21) that the optimal {λ∗i }d

i=1 to Eq. (19)
satisfy λ∗q+1 = · · · = λ∗d = 0.

In summary, the optimal objective value to Eq. (19) or
equivalently Eq. (15) can be obtained via minimizing
Eq. (21) subject to the constraints on {λi} or equiv-
alently Eq. (17). Since Eq. (20) is minimized when
Q = P1, we conclude that M∗ = P1Λ∗PT

1 is optimal
to Eq. (15). This completes the proof.

Note that the optimization problem (not strictly con-
vex) in Eq. (15) may have multiple global minimizers
yet with the same objective value, while the formula-
tion in Eq. (17) can find one of those global minimizers.

4.3. Convergence Analysis

The alternating optimization procedure employed in
Algorithm 1 (cASO) is widely used for for solving
many optimization problems efficiently. However, such
a procedure does not generally guarantee the global
convergence. We summarize the global convergence
property of cASO algorithm in the following theorem.

Theorem 4.2. Algorithm 1 converges to the global
minimizer of the optimization problem F2 in Eq. (11).

Proof. The proof follows similar arguments in (Ar-
gyriou et al., 2007; Argyriou et al., 2008).

5. Computation of an Optimal Solution
to iASO

Recall that F2 in Eq. (11) is a convex relaxation of
iASO in Eq. (3). In this section, we present a theoret-
ical condition under which a globally optimal solution
to iASO can be obtained via cASO.

We first present the following lemma, which is the key
building block of the analysis in this section.

Lemma 5.1. Let {σi}m
i=1 be defined in Eq. (16) and

{γ∗i }q
i=1 be optimal to Eq. (17). For any h ∈ Nq, if

σh/σh+1 ≥ 1 + 1/η, then γ∗1 = · · · = γ∗h = 1 and
γ∗h+1 = · · · = γ∗q = 0.

Proof. Prove by contradiction. Assume that γ∗1 =
· · · = γ∗h = 1 and γ∗h+1 = · · · = γ∗q = 0 do not hold; this
contrary leads to γ∗h 6= 1 and hence 0 < γ∗h+1 ≤ γ∗h < 1,
since

∑q
i=1 γ∗i = h and γ∗i is non-increasing with i. We

show that there exists a feasible solution {ζ∗i }m
i=1 such

that
∑m

i=1 σ2
i /(η+γ∗i ) >

∑m
i=1 σ2

i /(η+ζ∗i ), thus reach-
ing a contradiction.

Let γ∗a be the element in {γ∗i }q
i=1 with the smallest

index a ∈ Nh, satisfying γ∗a 6= 1. Let γ∗b be the element
in {γ∗i }q

i=1 with the largest index b ∈ Nq, satisfying
γ∗b 6= 0. Note that it can be verified that a ≤ h and
h + 1 ≤ b. For any 0 < δ < min(1 − γ∗a, γ∗b ), we can
construct a feasible solution {ζ∗i }m

i=1 to Eq. (17) as:

ζ∗i =





γ∗i i ∈ Nq, i 6= a, i 6= b
γ∗a + δ i = a
γ∗b − δ i = b

such that 1 ≥ ζ∗1 ≥ · · · > ζ∗a > · · · ≥ ζ∗h > · · · > ζ∗b >
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0 = · · · = 0. Moreover, we have
(

σ2
a

η + γ∗a
+

σ2
b

η + γ∗b

)
−

(
σ2

a

η + ζ∗a
+

σ2
b

η + ζ∗b

)

= δ

(
σ2

a

(η + γ∗a)(η + γ∗a + δ)
− σ2

b

(η + γ∗b )(η + γ∗b − δ)

)

≥σ2
h+1δ

(
(1 + 1/η)2

(η + γ∗a)(η + γ∗a + δ)
− 1

(η + γ∗b )(η + γ∗b − δ)

)

>σ2
h+1δ

(
(1 + 1/η)2

(η + 1)(η + 1)
− 1

η2

)
= 0,

where the first inequality follows from σh/σh+1 ≥ 1 +
1/η, σa ≥ σh ≥ (1 + 1/η)σh+1, and σh+1 ≥ σb; the
second (strict) inequality follows from 1 > γ∗a, γ∗b > 0,
and 1 ≥ γ∗a + δ, γ∗b − δ ≥ 0. Therefore

∑m
i=1 σ2

i /(η +
γ∗i ) >

∑m
i=1 σ2

i /(η+ζ∗i ). This completes the proof.

We conclude this section using the following theorem.
Theorem 5.1. Let the problems F1 and F2 be defined
in Eqs. (8) and (11), respectively, and let (U∗,M∗) be
the optimal solution to F2. Let P1 ∈ Rd×d be orthogo-
nal consisting of the left singular vectors of U∗, and
{σi}q

i=1 be the corresponding non-zero singular val-
ues of U∗ in non-increasing order. Let Θ∗ consist of
the first h column-vectors of P1 corresponding to the
largest h singular values. If σh/σh+1 ≥ 1 + 1/η, then
the optimal solution to F1 is given by (U∗,Θ∗).

Proof. Since (U∗,M∗) is optimal to F2, it follows from
Theorem 4.1 that M∗ can be expressed as M∗ =
P1ΛPT

1 , where Λ = diag(λ1, · · · , λd) ∈ Rd×d can be
computed via Eq. (17). Given σh/σh+1 ≥ 1 + 1/η,
we can verify that λi = 1 if i ∈ Nh, and 0 oth-
erwise (Lemma 5.1); therefore M∗ = Θ∗TΘ∗, where
Θ∗ ∈ Rd×h corresponds to the first h column-vectors
of P1. Moreover, given a fixed U ∈ Rd×m in F1 and
F2 respectively, we have

min
ΘTΘ∈Me,ΘΘT=I

G1(U,Θ) ≥ min
M∈Mc

G2(U,M), (22)

where G1(U,Θ) and G2(U.M) are defined in Eqs. (7)
and (12) respectively, and Me and Mc are defined in
Eqs. (9) and (10) respectively. The equality in Eq. (22)
is attained when the optimal M to the right side of
Eq. (22) is an extreme point of the set Mc, i.e., belong
to the set Me. For a given U∗, if σh/σh+1 ≥ 1 + 1/η
is satisfied, Θ∗ minimizes G1(U∗, Θ) and the equality
in Eq. (22) can be attained. Hence, (U∗,Θ∗) is the
optimal solution to F1. This completes the proof.

6. Experiments

In this section, we evaluate the proposed cASO algo-
rithm on the tasks of multi-topic web pages catego-

rization using the Yahoo web pages data sets (Ueda &
Saito, 2002).

The Yahoo data sets consist of 11 top-level categories
(each category corresponds to one data set), and each
category is further divided into a set of second-level
categories (each sub-category corresponds to a topic in
one data set). We preprocess the data sets by remov-
ing topics with fewer than 100 web pages. The TF-IDF
scheme is used to represent the web pages, and the ob-
tained feature vectors are normalized to unit length. In
the experiments, we use the SVM hinge loss; quadratic
programs (QP) are solved via MOSEK2, and SVM is
solved via LIBSVM package (Chang & Lin, 2001).

Performance Comparsion We compare the pro-
posed cASO algorithm with SVM (independent SVM
for multi-task learning), ASO (alternating structure
optimization) (Ando & Zhang, 2005), and cMTFL
(convex multi-task feature learning) (Argyriou et al.,
2008) on the tasks of web pages categorization.

We use Macro F1 and Micro F1 (Lewis et al., 2004)
as the performance measures. The parameters in
the competing algorithms (the penalty parameter
C of SVM, the regularization parameters of ASO,
cASO and cMTFL) are determined via 3-fold cross-
validation. In ASO, cASO and cMTFL, the stopping
criterion is set as that the relative change of the objec-
tive value is smaller than 10−4. We randomly sample
1500 data points from each data set as training data,
and the remaining are used as test data.

The experimental results (averaged over 5 random rep-
etitions) as well as the standard deviation are pre-
sented in Tables 1 and 2. We can observe that cASO is
competitive with other competing algorithms on all of
the 11 data sets. Moreover, cASO outperforms ASO
(in this supervised setting) on 9 data sets in terms of
both Macro F1 and Micro F1. This superiority may
be due to the flexibility in the cASO formulation (via
the regularization term), and its guaranteed global op-
timal solution. The reason for the low performance of
SVM probably lies in that it does not utilize the rela-
tionship of the multiple learning tasks.

Efficiency Comparison We compare the efficiency
of cASO with other competing algorithms in terms
of computation time (in seconds) on the Arts data
set. We increase the training sample size from 500
to 2500, and record the computation time. From Fig-
ure 1, we can observe that SVM is the fastest algo-
rithm, while ASO is the slowest one. Note that in prac-
tice, early stopping can be applied in ASO as in (Ando
& Zhang, 2005). cASO performs faster than cMTFL

2http://www.mosek.com/
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Table 1. Performance comparison of competing algorithms on six Yahoo data sets. The statistics of the data sets are
presented in the second row, where n, d, and m denotes the sample size, dimensionality, and the number of topics (tasks),
respectively. In ASO and cASO, the shared feature dimensionality h is set as b(m− 1)/5c × 5.

Data Arts Business Computers Education Entertainment Health
(n, d, m) (7441, 17973, 19) (9968, 16621, 17) (12317, 25259, 23) (11817, 20782, 14) (12691, 27435, 14) (9209, 18430, 14)

SVM 33.93± 1.07 44.43± 0.56 30.09± 1.10 39.00± 2.42 46.88± 0.47 56.14± 2.58
Macro ASO 37.93± 1.57 44.64± 0.40 28.33± 0.67 36.93± 1.98 47.46± 0.37 57.63± 0.74

F1 cASO 37.35± 0.60 45.79± 0.69 33.35± 0.84 41.28± 0.90 49.66± 0.97 61.16± 1.70
cMTFL 37.06± 0.75 40.90± 1.66 32.50± 0.90 40.17± 0.55 50.94± 1.06 58.66± 2.22
SVM 43.99± 1.23 77.51± 0.51 55.36± 0.63 48.03± 1.56 55.69± 2.45 61.40± 4.76

Micro ASO 43.96± 0.03 78.08± 0.25 54.43± 0.40 46.97± 0.37 57.71± 0.33 65.90± 0.39
F1 cASO 47.69± 0.47 77.44± 0.94 54.54± 1.07 49.50± 0.57 57.90± 1.38 68.19± 1.01

cMTFL 46.31± 0.32 69.00± 1.01 49.38± 4.22 48.56± 0.40 58.25± 0.76 66.83± 1.72

Table 2. Performance comparison of competing algorithms on five Yahoo data sets. Explanation can be found in Table 1.

Data Set Recreation Reference Science Social Society
(n, d, m) (12797, 25095, 18) (7929, 26397, 15) (6345, 24002, 22) (11914, 32492, 21) (14507, 29189, 21)

SVM 43.01± 1.44 39.37± 1.15 41.80± 1.45 35.87± 0.79 30.68± 0.94
Macro ASO 43.63± 1.29 37.46± 0.27 39.26± 0.82 35.29± 0.67 29.42± 0.30

F1 cASO 47.12± 0.73 42.11± 0.60 45.46± 0.50 39.30± 1.28 34.84± 1.05
cMTFL 46.13± 0.58 43.25± 0.81 42.52± 0.59 38.94± 1.88 33.79± 1.43
SVM 49.15± 2.32 55.11± 3.16 49.27± 4.64 63.05± 2.45 40.07± 3.42

Micro ASO 50.68± 0.18 57.72± 0.51 49.05± 0.57 62.77± 3.59 46.13± 2.33
F1 cASO 53.34± 0.90 59.39± 0.39 53.32± 0.45 66.04± 0.62 49.27± 0.55

cMTFL 52.52± 0.92 58.49± 0.51 50.60± 0.76 65.60± 0.63 46.46± 0.87

when training with a fixed regularization parameter.
cASO and cMTFL have comparable efficiency, when
training with parameter tuning, and their computa-
tion time is close to that of SVM.
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Figure 1. Comparison of computation time (in seconds) (a)
training with parameter tuning; (b) training with a fixed
penalty/regularization parameter (the best one obtained
from tuning).
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Figure 2. Sensitivity study of η on Micro/Micro F1.

Sensitivity Study We study the effect of η on the
performance of cASO on Arts data. Recall that η =
β/α; we fix α = 1 and vary β from 10−4 to 105, and
record the obtained Macro/Micro F1. The experimen-
tal results are presented in Figure 2. We can observe

that a small η (equivalently small β) leads to lower F1,
while η ≈ 1 (equivalently α ≈ β) leads to the highest
F1. In the experiments, we also observe that cASO
requires more computation time for convergence using
a small η, while less computation time is required for
a large η.

Table 3. Comparison of the optimal objective values of F0

and F2 with different choices of η.

η 1000 100 10 1 0.1 0.01 0.001
1 + 1/η 1.001 1.01 1.1 2 11 101 1001

σh/σh+1 1.23 1.25 1.34 1.75 3.07 13.79 89.49
OBJF0 52.78 52.65 51.37 40.73 22.15 5.95 0.69
OBJF2 52.78 52.65 51.37 40.71 20.73 4.11 0.41

Relationship Study on F0 and F2 We study the
relationship between the problems F0 and F2 as well
as the condition presented in Theorem 5.1. We vary
the parameter η (by fixing α = 1 and varying β ac-
cordingly) from 103 to 10−3. F2 is solved via Algo-
rithm 1, and the optimal objective value OBJF2 and
the value of σh/σh+1 are recorded. Similarly, F0 is
solved via alternating optimization and its optimal
objective value OBJF0 is recorded. From the exper-
imental results in Table 3, we can observe that when
η ∈ {1000, 100, 10}, the condition σh/σh+1 > 1 + 1/η
is satisfied and hence OBJF0 = OBJF2 ; otherwise, we
observe OBJF0 > OBJF2 . This empirical result is con-
sistent with our theoretical analysis in Theorem 5.1.

7. Conclusion and Future Work
We present a multi-task learning formulation called
iASO for learning a shared feature representation from
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multiple related tasks. Since iASO is non-convex, we
convert it into a relaxed convex formulation, and then
develop the cASO algorithm to solve the convex relax-
ation efficiently. Our convergence analysis shows that
the cASO algorithm converges to a globally optimal
solution to the convex relaxation. We also present a
theoretical condition, under which cASO can find a
globally optimal solution to iASO.

We have conducted experiments on benchmark data
sets; the experimental results are consistent with our
theoretical analysis. We also observe that cASO with a
non-zero η, tends to either increase or at least keep the
generalization performance compared with ASO, while
significantly reducing the computational cost. We are
currently investigating how the solutions of cASO de-
pend on the parameters involved in the formulation as
well as their estimation. We plan to compare the pre-
sented iASO formulation with the multi-task learning
formulation using the trace-norm regularization. We
also plan to apply the cASO algorithm to applications
such as the automatic processing of biomedical texts
for tagging the gene mentions (Ando, 2007).
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