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Abstract

For classification with multiple labels, a common
approach s to learn a classifier for each label. With
a kernel-based classifier, there are two options to
set up kernels: select a specific kernel for each label
or the same kernel for all labels. In this work, we
present a unified framework for multi-label mul-
tiple kernel learning, in which the above two ap-

proaches can be considered as two extreme cases.

Moreover, our framework allows the kernels shared
partially among multiple labels, enabling flexible
degrees of label commonality. We systematically
study how the sharing of kernels among multiple
labels affects the performance based on extensive
experiments on various benchmark data including
images and microarray data. Interesting findings
concerning efficacy and efficiency are reported.
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Classification with multiple labels refers to classificatio
with more than 2 categories in the output space. Commonly,
the problem is decomposed into multiple binary classifica-
tion tasks, and the tasks are learned independently ohjoint
Some works attempt to address the kernel learning problem
with multiple labels. In[Jebara, 2004 all binary classifi-
cation tasks share the same Bernoulli prior for each kernel,
leading to a sparse kernel combinatiofZien, 2007 dis-
cusses the problem of kernel learning for multi-class SVM,
and[Ji et al, 2009 studies the case for multi-label classi-
fication. Both works above exploit the same kernel directly
for all classes, yeho empirical result is formally reported
concerning whether the same kernel across labels performs
better over a specific kernel for each label

The same-kernel-across-tasks setup seems reasonable at
first glimpse but needs more investigation. Mostly, the mul-
tiple labels are within the same domain, and naturally the
classification tasks share some commonality. One the other
hand, the kernel is more informative for classification when
it is aligned with the target label. Some tasks (say recagniz

With the proliferation of kernel-based methods like suppor sunse@ndanimalin images) are quite distinct, So a specific

vector machines (SVM), kernel learning has been attractinéfameI for each label should be encouraged. Given these con-
increasing attentions. As widely known, the kernel func- iderations, two questions rises naturally:

tion or matrix plays an essential role in kernel methods. For e Which approach could be better, the same kernel for all
practical learning problems, different kernels are usyaté- labels or a specific kernel for each label? To our best
specified to characterize the data. For instance, Gaussian k knowledge, no work has formally studied this issue yet.
nel with different width parameters; data fusion with het-
erogeneous representatioisinckrietet al, 20048. Tra-
ditionally, an appropriate kernel can be estimated through
cross-validation. Recent multiple kernel learning (MKL)
methodd Lanckrietet al., 20043 manipulate the Gram (ker-
nel) matrix directly by formulating it as a semi-definite pro  The questions above motivate us to develop a novel frame-
gram (SDP), or alternatively, search for an optimal convexwork to model taslksimilarity anddifferencesimultaneously
combination of multiple user-specified kernels via quadrat when handling multiple related classification tasks. Waxsho
cally constrained quadratic program (QCQP). Both SDP andhat the framework can be solved via QCQP with proper reg-
QCQP formulations can only handle data of medium sizeularization on kernel difference. To be scalable, an SILP-
and small number of kernels. To address large scale kernéike algorithm is provided. In this framework, selectingth
learning, various methods are developed, including SMOsame kernel for all labels or a specific kernel for each label
like algorithm[Bachet al, 2004, semi-infinite linear pro- are deemed as two extreme cases. Moreover, this framework
gram (SILP) Sonnenburgt al., 2007 and projected gradient allows various degree of kernel sharing with proper param-
method Rakotomamonijyt al, 2007. It is noticed that most  eter setup, enabling us to study different strategies afeder
existing works on MKL focus on binary classifications. In sharing systematically. Based on extensive experiments on
this work, MKL (learning the weights for each base kernel)benchmark data, we report some interesting findings and ex-
for classification with multiple labels is explored instead planations concerning the aforementioned two questions.

e A natural extension is to develop kernels that capture the
similarity and difference among labels simultaneously.
This matches the relationship among labels more rea-
sonably, but could it be effective in practice?



2 A Unified Framework regularization term dominates and forces all labels tocsele

To systematically study the effect of kernel sharing amongn€ same kernel (Same Model). In between, there are infinite

multiple labels, we present a unified framework to allow flex-number of Partial Model which control the degrees of kernel

ible degree of kernel sharing. We focus on the well-knowndifférence among tasks. The largers, the more similar the

kernel-based algorithm SVM, for learnikgpinary classifica-  <€rnels of each label are.

tion tasks{ f!}%_, respectively, based amtraining samples . .

{(xi,y!)}™_,, wheret is the index of a specific label. Let 3 Regularization on Kernel Difference

H!. be the feature space, a¢, be the mapping function Here, we develop one regularization scheme such that for-

defined aspl, : ¢4 (z) — MY, for a kernel functionk®.  mula (3) can be solved via convex programming. Since the

Let G! be the kernel (Gram) matrix for thieth task, namely optimal kernel for each label is expressed as a convex combi-

Gl = K'wi,xj) = (¢l (2) - ¢ (x;)). Under the setting nation of multiple base kernels as in eq. (4) and (5), e¥ch

of learning multiple label§ ft}_, using SVM, each labef? essentially represents the kernel associated with-thela-

can be seen as learning a linear function in the feature spa&€!l- We decouple the kernel weights of each label into two

H., such thatf*(x) = sign((w?, ¢% (x)) + b*) wherew? s~ NON-negative parts:

the feature weight ankf is the bias term. _ 0! = ¢ +f, G >0 (6)
Tytplctally, the dual formulation of SVM is considered. Let \where(; denotes the shared kernel across labelspaisithe

D(a", ") denote the dual objective of titeh task given ker-  |apel-specific part. So the kernel difference can be defised a

nel matrixG*: Lk
t1k _ t
D(a',G") = [o']"e — %[at]T (G oy'ly'") o (1) Q({G"}im) = 2 ; Z;% (")
where for the taskf*, Gt € 5™ denotes the kernel matrix FOr presentation convenience, we denote
and S7 is the set of semi-positive definite matricesde- Gi(a) = [a']" (Gl oy'[y]") o (8)

notes element-wise matrix multiplication! € R™ denotes It follows that the MKL problem can be solved via QCEP
the dual variable vector. Mathematically, multi-labelrigiag . o
Theorem 3.1. Given regularization as presented (6) and

with & labels can be formulated in the dual form as: (7), the problem ir(3) is equivalent to a Quadratically Con-
k strained Quadratic Program (QCQP):

max > D('.6") @ ‘
tothie, =1 max Z[at]Te - ls
s.t. [Tyt =0, 0<a' <C, t=1,---,k P} 2
Here,C is the penalty parameter for allowing the misclassi- k
fication. Given{G'}¥_,, optimal{a!}¥_, in Eq. (2) can be st s>sg, 52 Zst — kA
found by solving a convex problem. t=1
Note that the dual objective is the same as the primal objec- k
tive of SVM due to its convexity (equal to the empirical clas- Sg > Z Gi(a), i=1,---,p
sification loss plus model complexity). Followihganckriet =1
et al, 20044, multiple kernel learning with: labels andp s:>Gla), i=1,--,p, t=1,---,k
base kernel&, G, - - - , G, can be formulated as: o L T
[@]'y"'=0, 0<a'<C, t=1,---,k
k The kernel weights of each labél (1?) can be obtained via
: t\k t ot i
(G A QUG im) + {iﬂl%’fl > D6 () the dual variables of the constraints.
0Tt . =t The QCQP formulation involvesk + 2 variables(k +1)p
st [y =0, 0<a’ <C, t=1,--,k quadratic constraints an@(nk) linear constraints. Though
4 this QCQP can be solved efficiently by general optimization
g = Z@Gi, t=1,--,k (4)  software, the quadratic constraints might exhaust menesry r
i=1 sources ifk or p is large. Next, we’ll show a more scalable
P algorithm that solves the problem efficiently.
Y oi=1,0">0, t=1,---k (5)
i=1 4 Algorithm

whereQ({G*}%_,) is a regularization term to represent the The objective in (3) giver\ is equivalent to the following
cost associated with kernel differences among labels. fio ca problem with a propes and other constraints specified in (3):

ture the commonality among labef3 should be anonotonic k 1
increasing function of kernel difference) is the trade-off  minmax {[at]Te — =[" (6" o ¥y'I¥']") ozt} 9)
parameter between kernel difference and classificatia los 19} {e*} =} 2

Clearly, if \ is set to 0, the objective goal is decoupled vk <
into k& sub-problems, with each selecting a kernel indepen- st O{ghi) <8 (10)
dently (Independent Model); Wheis sufficiently large, the !Please refer to the appendix for the proof.



Compared with\, 8 has an explicit meaning: the maximum
difference among kernels of each label. Siicg_, 6!
1, the min-max problem in (9), akin ttBonnenburget al.,
2007, can be expressed as:

k
min Z g (12)
=1
P
st. Y 0iD(a',Gy) < g', Vo' € S(t) (12)
i=1
with Sit)={a'l0<a' <C, [o']Ty" =0} (13)

Note that the max operation with respectfois transformed
into a constraint for all the possibt€ in the setS(¢) defined
in (13). An algorithm similar to cutting-plane could be uti-
lized to solve the problem, which essentially adds constsai
in terms ofa! iteratively. In theJ-th iteration, we perform
the following:

1). Given#! andg® from previous iteration, find out new
o, in the set (13) which violates the constraints (12) mos
for each label. Essentially, we need to find aditsuch that
>P_0!D(a!,G;) is maximized, which boils down to an
SVM problem with fixed kernel for each label:

1 p
e— 5" <Z 0;G; o yt[yt]T> a!
=1

Here, each label's SVM problem can be solved independent

max [o!]T
at

Table 1: Data Description

Data #samples #labels #kerndls
Ligand 742 36 15
Multi-label Bio 3588 13 8
Scene 2407 6 15
Yeast 2417 14 15
USPS 1000 10 10
Letter 1300 26 10
Multi-class | Yaleface 1000 10 10
20news 2000 20 62
Segment 2310 7 15

multi-label classification and one-vs-all approach perfer
reasonably wel[Rifkin and Klautau, 2004 We report av-
erage AUC and accuracy for multi-label and multi-class data
respectively. A portion of data are sampled fral8PS Let-

ter andYalefaceas they are too large to handle directly. Var-
ious type of base kernels are generated. We generate 15 dif-
fusion kernels with parameter varying from 0.1 to 6 Edig-
and[Tsuda and Noble, 2004The 8 kernels oBio are gener-
@ated following [Lanckrietet al., 20048; 20newsuses diverse

text representatiori&olda, 1997 leading to 62 different ker-
nels; For other data, Gaussian kernels with different vedth
are constructed. The trade-off parameteof SVM is set to

a sensible value based on cross validation. We vary the num-
ber of samples for training and randomly sample 30 different
subsets in each setup. The average performance are recorded

I%.2 Experiment Results

and typical SVM acceleration techniques and existing SVMpye to space limit, we can only report some representative

implementations can be used directly.
2). Givenca!, obtained in Step 1, addlinear constraints:

0;D(a5,Gi) <g', t=1,-- .k
and find out new* andg® via the problem below:

k
Do
t=1

14
Ze’f‘D(a;’Gl) Sgta .7: 17 aJ
i=1

min
s.t.

r
0'>0, Y 0l=1, t=1,---,k
=1

1 en &
52275 <B,0; =G+, G 20

t=1 i=1
Note that both the constraints and the objective are lirsear,
the problem can be solved efficiently by general optimizatio
package.

3). J = J + 1. Repeat the above procedure until eds
found to violate the constraints in Step 1.

So in each iteration, we interchangeably solveSVM

problems and a linear program of si@ékp).

5 Experimental Study
5.1 Experiment Setup

results in Table 3-5. The details are presented in an extende
technical reporfTanget al,, 2009. Tr Ratioin the first row
denotes the training ratio, the percentage of samples used
for training. The first column denotes the portion of kernels
shared among labels via varying the paramgter(10), with
Independentand Same model being the extreme. The last row
(Diff ) represents the performance difference between the best
model and the worst one. Bold face denotes the best in each
column unless there is no significant difference. Below, we
seek to address the problems raised in the introduction.

Does kernel regularization yield any effect?

The maximal difference of various models on all data sets
are plotted in Figure 1. The x-axis denotes increasing-rain
ing data and y-axis denotes maximal performance difference
Clearly, when the training ratio is small, there’s a difiece
between various models, especially 1d8PS Yalefaceand
Ligand For instance, the difference could be as largé%s
when only2% USPSdata is used for training. This kind
of classification with rare samples are common for applica-
tions like object recognition. Datio andLetterdemonstrate
medium difference (between— 2%). But for other data sets
like Yeastthe difference £ 1%) is negligible.

The difference diminishes as training data increases. This
is common for all data sets. When training samples are mod-
erately large, kernel regularization actually has no mueh e
fect. It works only when the training samples are few.

Which model excels?

4 multi-label data sets are selected as in Table 1. We alsblere, we study which model (Independent, Partial or Same)
include 5 multi-class data sets as they are special cases @xcels if there’s a difference. In Table 3-5, the entriesatdb
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Figure 1: Performance Difference Figure 2: Performance drigand Figure 3: Efficiency Comparison
denote the best one in each setting. It is noticed that Same Table 2: Kernel Weights of Different Models
Model tends to be the winner or a close runner-up most of Kl K2 K3 K4 K5 K6 K7
the time. This trend is observed for almost all the data. Fig- Ch 0 0 0 0 .25 .43 .32
ure 2 shows the average performance and standard deviatioh ¢; .04 01 0 0 03 92 O
of different models wheri0% of Ligand data are used for ¢ | 0 0 0 0 .11 .59 .30
training. Clearly, a general trend is that sharing the saemne k | g“ 8 8 8 1% 'ig ig '%)%
nel is likely to be more robust compared with Independent CZ 0 0 0 02 41 46 14
Model. Note that the variance is large because of the small Cn 0 03 0 0 39 49 09
sample for training. Actually, Same Model performs best or Cs | 00 0 .03 .20 .16 .54 .06
close in 25 out of 30 trials. Co 0 0 0 .14 39 .39 .08

So it is a wiser choice to share the same kernel even if Cyp | 10 .02 .02 .24 .15 .47 .00
binary classification tasks are quite different. Independe C; | .02 .01 0 0 .19 .60 .19
Model is more likely to overfit the data. Partial model, on C; | .03 .01 0 0 .05 .91 0
the other hand, takes the winner only if it is close to the same ¢; (02 .01 0 O .09 .70 .13
model (sharing0% kernel as in Table 4). Mostly, its perfor- o g4 85 81 8 0(; %% 2; %5
mance stays between Independent and Same Model. co |02 o1 0 03 23 67 o8
Why is Same Model better? ¢r .02 .02 0 .04 .19 .67 .0%
As have demonstrated, Same Model outperforms Partial and gg '85 81 'Og '8§ %5 'gg '8?
Independent Model. In Table 2, we show the average kernel Cg 08 02 0 14 11 65 .od

. . 10 . . . . .
weights of 30 runs whe@% of USPS data is employed for S — 103 .01 0 0 07 88 01
training. Each column stands for a kernel. The weights for —=ggo7 7= 0 0 0 0 07 93 0

kernel 8-10 are not presented as they ardallThe first 2
blocks represents the kernel weights of each class obtaine : . . .

via Indeplcaandent and Partial Modgel sharisegs kernel, re- g(pk) varl_ables (the kernel weights) and increasing number
spectively. The row follows are the weights produced byo.f constraints needs_ to be solved: We_ notice that the algo-
Same Model. All the models. no matter which class refelr'thms terminates with dozens of iterations and SVM com-
t0 choosei 5 éndKG Howevér Same Model assigns 'apvery putation dominates the computation time in each iterafion i
large weight to thé-th kernel. In the last row, we also presentpO<I; [ HenOceI,kthne t/(\)/aaelrzrjnﬁs(;r?;nrr:lljemxgirlso?ir'zeprrgt)i((l)rngtew
the weight obtained whe60% of data is used for training, (Ikpn®) + O(Ikn™) , :

in which case Independent Model and Same Model tend to AS for Same Model, the same kernel is used for all the
select almost the same kernels. Compared with others, tHiinary classification problems and thus requires less tone f
weights of Same Model obtained usia data is closer to kernel combination. Moreover, compared with Partial Model
the solution obtained with0% data. In other words, forcing ONlY O(p), instead o0 (pk) variables (kernel weights), need
all the binary classification tasks to share the same kesnel {0 P€ determined, resulting less time to solve the LP. With In
tantamount to increasing data samples for training, riegult dependent Model, the total time for SVM training and kernel

in a more robust kernel. combination remains almost the same as Partial. Rather than
one LP withO(pk) variables, Independent needs to salve
Which model is more scalable? LP with only O(p) variables in each iteration, potentially sav-

Regularization on kernel difference seems to affectng some computation time. One advantage of Independent

marginally when the samples are more than few. ThusModel is that, it decomposes the problem into multiple in-

a method requiring less computational cost is favorable.  dependent kernel selection problem, which can be pardllele
Our algorithm consists of multiple iterations. In each it- seamlessly with a multi-core CPU or clusters.

eration, we need to solvie SVMs given fixed kernels. For In Figure 3, we plot the average computation time of vari-

each binary classification problem, combining the kernel maous models ohiganddata on a PC with Intel P4 2.8G CPU

trix costsO(pn?). The time complexity of SVM isO(n”)  and 1.5G memory. We only plot Partial model shariiogs

with n € [1,2.3] [Platt, 1999. After that, a LP with kernel to make the figure legible. All the models yield simi-



Table 3: Ligand Result

Tr Ratio | 10% 15% 20% 25% 30% 35%  40% 45% 50% 60% 70% 8P%
Independent| 69.17 77.30 79.22 81.01 80.92 82.73 82.85 83.95 83.83 85.42678 85.76
20% | 71.23 77.43 79.33 81.07 81.01 8280 8292 84.03 83.90 85.46.708 85.80

40% | 71.52 77.88 80.34 81.17 8155 8290 83.01 84.18 84.01 85.53808 85.92

60% | 72.99 79.71 81.39 82.09 8228 8330 83.69 8449 8429 85738948 86.12

80% | 74.44 80.65 81.75 82.83 8286 83.66 84.35 84.78 84.45 85.88 86.99 86.30
Same| 73.66 80.65 8195 8290 8290 83.64 84.34 84.79 8452 8583 86.98.299

Diff 5.54 3.44 2.73 1.93 1.97 0.93 1.52 0.84 0.69 0.46 0.33 D.54

Table 4: Bio Result

Tr Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30P0
Independent| 60.13 63.84 66.31 6751 69.18 7142 7224 7318 73.69 74.98.817 81.95
20% | 60.24 64.38 66.90 6857 70.19 7233 73.09 73.87 74.23 75.50.088 82.15

40% | 60.37 64.86 67.30 69.10 70.67 72.86 73.59 7435 74.66 75.88338 82.40

60% | 60.71 65.21 67.77 69.47 71.06 7327 7395 7473 75.02 76.20568 82.61

80% | 60.92 65.40 67.96 69.68 71.38 7352 7422 75.03 75.27 76.42 80.72 82.76

90% | 60.99 65.45 6794 69.72 7141 7357 7425 7510 7534 76.46 80.73 82.78
Same| 59.98 65.21 67.51 69.52 7137 73.43 74.13 75.045.34 76.44 80.70 82.73

Diff 1.01 1.61 1.65 2.21 2.23 2.15 2.01 1.92 1.65 151 0.92 D.83

Table 5: USPS Result

Tr Ratio 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 40% 60020
Independent| 49.09 60.54 64.57 69.28 72.44 75.08 77.24 78.84 80.69 86.33.129 91.96
20% | 51.50 61.39 65.14 70.19 7296 7544 7753 79.10 80.90 86.40.189 92.04

40% | 53.27 62.48 6586 71.19 73.63 7584 77.82 79.47 81.06 86.489.209 92.20

60% | 54.64 63.71 67.22 7201 7433 76.29 78.27 79.85 81.24 86.51.239 92.20

80% | 56.39 65.18 68.47 72.61 7493 76.70 78.63 80.06 81.45 86.530.229 92.29
Same| 58.40 66.63 70.05 73.29 75.49 77.07 79.08 80.31 81.W%.46 90.21 92.28
Diff(%) 9.31 6.09 5.48 4.01 3.05 1.99 1.84 1.47 0.87 0.16 0.11 D.33

lar magnitude with respect to number of samples, as we haveor data like microarray, graphs, and structures, some spe-
analyzed. But Same Model takes less time to arrive at a solzialized kernels are computationally expensive. This snev
tion. Similar trend is observed for other data sets as well.  worse if we have hundreds of base kernels. Thus, it is desir-

Same Model, with more strict constraints, is indeed moreable to select those relevant kernels for prediction. Aaioth
efficient than Independent and Partial model if parallel com potential disadvantage with Average Kernel is robustrigss.
putation is not considered. So in terms of both classificatio verify this, we add an additional linear kernel with random
performance and efficiency, Same model should be preferretioise. The corresponding performance is presented in tthe 2n
Partial Model, seemingly more reasonable to match the reblock of Table 6. The performance of Average Kernel deterio-
lationship between labels, should not be considered giverates whereas Same Model's performance remains nearly un-
its marginal improvement and additional computationat.cos changed. This implies that Average Kernel can be affected by
This conclusion, as we believe, would be helpful and suggesioisy base kernels whereas Same Model is capable of picking
tive for other practitioners. the right ones.

A special case: Average Kernel .
P 9 6 Conclusions

Here we examine one special case of Same Model: average
of base kernels. The first block of Table 6 shows the perKernel learning for multi-label or multi-class classifiiat
formance of MKL with Same Model compared with averageproblem is important in terms of kernel parameter tuning or
kernel on Ligand over 30 runs. Clearly, Same Model is al-heterogeneous data fusion, whereas it is not clear whether
most always the winner. It should be emphasized that simpla specific kernel or the same kernel should be employed
average actually performs reasonably well, especiallynvhein practice. In this work, we systematically study the ef-
base kernels are good. The effect is mostly observable whefects of different kernel sharing strategies. We presemtia u
samples are few (say only)% training data). Interestingly, fied framework with kernel regularization such that flexible
as training samples increases to 60%-80%, the performanckegree of kernel sharing is viable. Under this framework,
with Average Kernel decreases. However, Same Model’s petthree different models are compared: Independent, Partial
formance improves consistently. This is because Same Modehd Same Model. It turns out that the same kernel is preferred
can learn an optimal kernel while Average does not considefor classification even if the labels are quite different.
the increasing label information for kernel combination. When samples are few, Same Model tends to yield a more
A key difference between Same Model and Average Kernetobust kernel. Independent Model, on the contrary, is yikel
is that the solution of the former is sparse. For instanceieSa to learn a ‘bad’ kernel due to over-fitting. Partial Model; oc
Model on Ligand data picks 2-3 base kernels for the final socasionally better, lies in between most of the time. However
lution while Average has to consider all the 15 base kernelgthe difference of these models vanishes quickly with ingrea



Table 6: Same Model compared with Average Kernel on Ligan@D&he 1st block is the performance when all the kernels
are reasonably good; The 2nd block is the performance wheisg kernel is included in the base kernel set.

Tr_ratio 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%

Good Same | 73.66 80.65 81.95 8290 8290 83.64 84.34 84.79 8452 85.83 86.98299
Kernels | Average | 77.12 79.67 80.69 81.72 8201 8242 8252 8219 8183 80.76 78.48.177
Noisy Same | 73.69 80.64 8192 8292 8292 8363 84.36 84.72 8453 85.84.948 86.32
Kernels | Average | 73.32 78.41 79.08 79.81 78.98 80.29 79.72 79.81 79.12 77.86.117 71.67

ing training samples. All the models yield similar classific By adding constraints as
tion performance when samples are large. In this case, Inde-

k
pendent and Same are more efficient. Same Model, a little 5> s0,8 > Z se — kA
bit surprising, is the most efficient method. Partial Model, t=1
though, asymptotically bears the same time complexitgoft k
needs more computation time. 50 > Z Gila), i=1,---,p
It is observed that for some data, simply using the aver- t=1
age kernel (which is a special case of Same Model) with a s:>Gia), i=1,---,p, t=1,---,k

proper parameter tuning for _SVM occaspnally gives reason-\s thus prove the Theorem.
able good performance. This also confirms our conclusion 0
that selecting the same kernel for all labels is more robust i

reality. However, this average kernel is not sparse and ca
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