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The social-

dimension-based 

learning framework 

(SocioDim) can 

help predict online 

behaviors of social 

media users given 

a network and the 

behavior information 

of some actors in the 

network.

tag, and comment on different types of con-
tent (including bookmarks, photos, and vid-
eos). Users registered at these sites can also 
become friends, fans, or followers of others.

The prolific and expanded use of so-
cial media has turned online interactions 
into a vital part of the human experience. 
Barack Obama’s successful US presiden-
tial election campaign, for example, has 
been partially attributed to his smart In-
ternet strategy and access to millions of 
younger voters through social media such  
as Facebook, the popular social network-
ing site currently claiming 400 million ac-
tive users. The large population actively in-
volved in social media also provides great 
opportunities for businesses. Dell, one of the 
top PC companies, has reportedly “earned 
$3 million in revenue directly through 
[the social networking and microblogging  
service] Twitter since 2007” (see http:// 
bits.blogs.nytimes.com/2009/06/12/dell- 
has-earned-3-million-from-twitter).

Concomitant with the opportunities pro-
vided by rocketing online traffic in social 

media are the challenges of user and cus-
tomer profiling, accurate user matching 
at different domains, as well as effective 
social networking advertising, marketing, 
and recommendations. For example, the 
New York Times has reported that the ban-
ner ads displayed to members of social me-
dia received little attention because most of 
them were irrelevant (http://www.nytimes.
com/2008/12/14/business/media/14digi.
html). On the other hand, social network-
ing sites can only collect limited user pro-
file information, either because of privacy 
issues or because users decline to share in-
formation. If we can leverage the abundant 
network data accessible in social media 
wisely, the situation of social networking 
advertising might be improved significantly.

In this article, we examine how to predict 
the online behavior of social media users 
given the behavior information of some ac-
tors in the network. We can connect many 
social media tasks to the problem of col-
lective behavior prediction. Because the 
connections in a social network represent 

Social media such as Facebook, MySpace, Twitter, Digg, YouTube, and 

Flickr help people from all walks of life express their thoughts, voice 

their opinions, and connect to each other anytime and anywhere. Popular 

content-sharing sites such as Delicious, Flickr, and YouTube let users upload, 
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various kinds of relations, we intro-
duce SocioDim, a social-dimension-
based learning framework. Using 
SocioDim, we can extract social di-
mensions that represent the latent af-
filiations associated with actors and 
then apply supervised learning to de-
termine which dimensions are infor-
mative for behavior prediction. The 
framework is especially suitable for 
large-scale networks, paving the way 
for collective behavior study in many 
real-world applications.

Collective Behavior
We can generalize the social network 
advertising problem to the study of 
collective behavior. Different types 
of behavior can include a broad range 
of actions, such as joining a group, 
connecting to a person, clicking on 
an ad, becoming interested in cer-
tain topics, or dating certain types 
of people. Collective behavior refers 
to behaviors of individuals in a social 
network environment, but it is not 
simply the aggregation of individual 
behaviors. In a connected environ-
ment, individuals’ behaviors tend to 

be interdependent, influenced by the 
behavior of friends. This naturally 
leads to behavior correlation between 
connected users.

Such collective behavior correlation 
can also be explained by homophily,1 
a term coined in the 1950s to explain 
our tendency to link up with one an-
other in ways that confirm rather 
than test our core beliefs. In other 
words, we are more likely to connect 
to others sharing certain similari-
ties with us, and similar people tend 
to become friends, leading to simi-
lar behavior between connected egos 
in a social network. This phenom-
enon has been observed in both the 
real world and online environments. 
For example, if our friends buy some-
thing, there is a better-than-average 
chance that we’ll buy it, too.

Because a social network provides 
valuable information concerning  
actor behaviors, it is natural to ask 
how we can use the behavior corre-
lation presented in a social network 
to predict collective behavior. That 
is, given a social network with behav-
ior information of some actors, how 

can we infer the behavior outcome of 
the remaining actors within the same 
network?

This problem assumes that we can 
observe the behaviors of some indi-
viduals so that social learning is at-
tainable. The amount of information 
that we can collect in reality depends 
on tasks. For instance, if we want to 
know whether a user will click on 
an ad, we can collect this informa-
tion when the ad is displayed to the 
user. To determine behavior concern-
ing voting for a presidential candi-
date, we can collect some voluntary 
responses using online surveys. With 
such behavior information, we can 
unravel the collective behavior by ex-
ploiting the network connectivity be-
tween actors. (See the “Related Work 
in Collective Behavior Prediction” 
sidebar for previous work in this 
area.)

Heterogeneous Relations  
in Social Networks
To understand collective behavior, re-
searchers in social science and behav-
ioral studies have used the threshold 

The collective behavior prediction problem is relevant 
to within-network classification1 when data instances 
are presented in a network format. In the case of 

social learning, the data instances are not independently, 
identically distributed as in conventional data mining. To 
capture the correlation between labels of neighboring  
data instances, typically a Markov dependency is assumed. 
That is, the label of one node depends on the labels (or  
attributes) of its neighbors. Normally, a relational classifier 
is constructed based on the relational features of labeled 
data, which then requires an iterative process to determine 
the class labels for the unlabeled data. The class label or the 
class membership is updated for each node while the labels 
of its neighbors are fixed. This process is repeated until the 
label inconsistency between neighboring nodes is mini-
mized. Research has shown that a simple weighted-vote 
relational neighborhood (wvRN) classifier works reason-
ably well on some benchmark relational data and is recom-
mended as a baseline for comparison.1 

Most relational classifiers, following the Markov assump-
tion, only capture the local dependency. To handle the 
long-distance correlation, the latent group model2 and the 
nonparametric infinite hidden relational model3 assume 

Bayesian generative models such that the link (and actor  
attributes) are generated based on the actors’ latent cluster 
membership. However, the model intricacy and high com-
putational cost for inference associated with these models 
hinder their application to large-scale networks. Hence, a 
clustering algorithm is applied first to find the hard cluster 
membership of each actor, and then the latent group vari-
ables are fixed for later inference.2 Because each actor is 
assigned to only one latent affiliation, it does not capture 
the multitude of affiliation association required in social 
learning.
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model,2 in which an actor adopts one 
action when the number of his friends 
taking an action exceeds a cer-
tain threshold. In his seminal work, 
Thomas C. Schelling used a variant 
of this threshold model to show that 
a small preference for one’s neighbors 
to be of the same color could lead to 
total race segregation.3 Similarly, the 
machine learning community has ad-
opted collective inference4 to make 
predictions about collective behavior. 
It assumes that the behavior of one 
actor depends on that of her friends. 
For prediction, collective inference is 
required to find an equilibrium sta-
tus to minimize the inconsistency be-
tween connected actors. This is nor-
mally done by iteratively updating the 
possible behavior output of one actor 
while fixing the behavior output (or 
attributes) of his connected friends 
in the network. Researchers have 
shown that approaches that consider 
this network connectivity for behav-
ior prediction outperform those that 
do not.

However, connections in social me-
dia are often not homogeneous. The 
heterogeneity presented in network 
connectivities can hinder the success 
of collective inference. People can con-
nect to their family, colleagues, col-
lege classmates, and online buddies.  
Some of these heterogeneous rela-
tions might be helpful in determining 
a targeted behavior, while others are 
not. For instance, the Facebook con-
tacts of one user Lei might consist of 
postgraduate friends he met at Ari-
zona State University (ASU), his un-
dergraduate classmates at Fudan Uni-
versity, and some high school friends 
in Sanzhong. While it seems reason-
able to infer that his friends at ASU 
are likely to attend a football game, 
based on the fact that he is going to 
watch an ASU football game, it does 
not make sense to propagate this 
preference to his high school friends 

or undergraduate classmates. Directly  
applying collective inference to these 
kinds of networks does not differen-
tiate heterogeneous connections, thus 
making it risky for prediction of col-
lective behavior.

Moreover, online social networks 
tend to be noisier than those in the 
physical world because it is much 
easier for users to connect online. 
Some users have thousands of online 
friends whereas this is hardly true in 
reality. For instance, one Flickr user 
connects to more than 19,000 con-
tacts (see http://www.flickr.com/ 
people/22711787@N00). In such cases, 
it is likely that only a small portion of 
them can influence the actor’s behav-
ior. Therefore, it is helpful to differ-
entiate people’s relations for behavior 
prediction.

It is often a luxury to have de-
tailed relation information, although 
some sites like LinkedIn and Face-
book ask people how they know 
each other when they become con-
nected. Most of the time, people 
decline to share such detailed in-
formation, resulting in a social net-
work between users without explicit 
information about pairwise rela-
tion types. Even if the pairwise re-
lation information is available, it is 
not necessarily relevant or refined 
enough to help determine the behav-
iors of connected users. For exam-
ple, knowing two actors are college 
classmates does not necessarily help 
predict how they will vote for a pres-
idential candidate.

Therefore, collective behavior pre-
diction must address two challenges: 

•	 Without relation-type informa-
tion, is it possible to differentiate  

relations based on network 
connectivity?

•	 If relations are differentiated, how 
can we determine whether a rela-
tion can help behavior prediction?

Social Dimensions
Differentiating pairwise relations 
based on network connectivity alone 
is by no means an easy task. Alterna-
tively, we can look at actors’ social 
dimensions,5 which represent the re-
lations associated with actors, with 
each dimension denoting one relation. 
If two actors ai and aj are connected 
because of relationship R, both ai and 
aj should have a nonzero entry in the 
social dimension that represents R. In 
the context of our previous Facebook 
example, we can characterize the re-
lations between Lei and his friends 
by three affiliations: Arizona State 
University (ASU), Fudan University  
(Fudan), and high school (Sanzhong). 
Table 1 shows the actors’ correspond-
ing social dimensions. If one actor be-
longs to one affiliation, then the cor-
responding entry is nonzero. Because 
Lei is an ASU student, his social di-
mension includes a nonzero entry for 
the ASU dimension to capture the re-
lationship between him and his ASU 
friends.

Social dimensions capture promi-
nent interaction patterns presented in 
a network. Because of the multifac-
eted nature of human social life, one 
actor is likely to be involved in multi-
ple social dimensions; the table shows 
three different relations for Lei.

SocioDim Framework
The social dimensions shown in  
Table 1 are constructed based on  

Table 1. Social dimension representation.

Actors ASU Fudan Sanzhong 

Lei 1 1 1

Actor 1 1 0 0

� � � �
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explicit relation information. Without 
knowing such true relationship, how 
can we extract latent social dimen-
sions? One key observation is that ac-
tors of the same relation tend to con-
nect to each other. For instance, Lei’s 
friends at ASU tend to interact with 
each other as well. Hence, to infer a 
latent social dimension, we need to 
find a group of people who interact 
with each other more frequently than 
at random. This boils down to a clas-
sical community-detection problem. 
Each actor can be assigned to multi-
ple communities.

After we extract the social dimen-
sions, we consider them as normal 
features and combine them with the 
behavioral information to conduct 
supervised learning. Different tasks 
might represent the user behavior in 
different ways. In certain cases, we 
can represent the behavior output 
by labels—for instance, whether a 
user joins a group, likes a product, or 
votes for a presidential candidate. In 
some other cases, we might represent 
the behavior output more properly 
using continuous numbers, such as 
the probability that a user clicks on 
an ad and the frequency that a user 
visits an interest group. Depending 
on the behavior representation (dis-
crete or continuous values), we can 
use a classifier or a regression learner. 
This supervised learning is criti-
cal because it will determine which  

dimensions are relevant to the target 
behavior and assign proper weights 
to different social dimensions.

Hence, we can apply the SocioDim 
framework to handle the network 
heterogeneity.5 It consists of two 
steps, each of which addresses one 
challenge sketched in the previous 
section:

•	 Extract meaningful social dimen-
sions based on network connectiv-
ity via community detection.

•	 Determine relevant social dimen-
sions through supervised learning.

Prediction is straightforward once 
a learned model is ready, because 
the social dimensions have been cal-
culated for all actors. Applying the 
constructed model to the actors’ so-
cial dimensions without behavior in-
formation, we obtain the behavior 
predictions.

The SocioDim framework basically 
assumes that the affiliation member-
ship of actors determines their behav-
ior (see Figure 1). Individuals are as-
sociated with different affiliations in 
varying degrees (with line thickness 
indicating the degree of association) 
and distinctive affiliations regulate 
the member behavior differently. For 
instance, the Catholic Church op-
poses smoking and abortion, while 
the Democratic Party does not op-
pose abortion. Some affiliations  

might have no influence over certain 
behavior, however, such as the Dem-
ocratic and Republican Parties over 
smoking. The final behavior output of 
individuals depends on the affiliation 
regularization and individual associa-
tions. The first step of our proposed 
SocioDim framework essentially finds 
out the individual associations, and 
the second step learns the affiliation 
regularization by assigning weights to 
different affiliations.

Social Dimension Extraction
We proposed the SocioDim frame-
work to address the relation hetero-
geneity presented in social networks. 
Thus, a sensible method for social 
dimension extraction becomes criti-
cal to its success. We can categorize 
existing methods to extract social  
dimensions into node and edge views.

Node-view methods concentrate 
on clustering network nodes into 
communities. As we have mentioned, 
the extraction of social dimensions 
boils down to a community-detection  
task, and each actor can be assigned 
multiple affiliations. Many existing 
community-detection methods, with  
the aim of partitioning network 
nodes into disjointed sets, do not 
satisfy this requirement. Alterna-
tively, a soft-clustering scheme is pre-
ferred. Hence, we can apply variants 
of spectral clustering, modularity 
maximization, non-negative matrix 
factorization, or block models. One 
representative example of node-view  
methods is modularity maximiza-
tion.6 The top eigenvectors of a mod-
ularity matrix can be used as the  
social dimensions.5

Suppose we are given a toy net-
work, as in Figure 2, of which there 
are nine actors, with each circle rep-
resenting one affiliation. For k affilia-
tions, typically at least k – 1 social di-
mensions are required. Table 2 shows 
the top social dimensions based on 

Figure 1. Underlying collective behavior model for the SocioDim framework. The 
orange circles denote individuals, the green rectangles denote affiliations, and the 
blue blocks at the bottom denote behaviors.
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modularity maximization of the toy 
example. The actors with negative 
values belong to one affiliation, and 
actor 1 and those with positive val-
ues belong to the other affiliation. 
Note that actor 1 is involved in both 
affiliations. Hence, actor 1’s value is 
in between (close to 0). This social 
dimension does not explicitly state 
the association(s), but it presents the  
degree of associations for all actors.

Edge-view methods concentrate 
on clustering edges of a network 
into communities.7 An edge resides 
in only one affiliation, although a 
node can be involved in multiple af-
filiations. For instance, in Figure 2, 
actor 1 participates in both affilia-
tions, but his connections are well 
separated. Hence, instead of directly 
clustering the nodes of a network into 
some communities, we can take an 
edge-centric view—that is, partition-
ing the edges into disjointed sets such 
that each set represents one latent af-
filiation (as in Figure 2). In the figure, 
the red edges represent one affiliation 
and the green ones denote the other.

Table 2 shows how we can con-
vert the resultant edge partition into 
a social dimension representation. 
An actor is involved in one affiliation 
as long as any of his connections are 
involved in that affiliation. For in-
stance, actor 1 has connections en-
gaged in both affiliations: connection 
(1, 7) is in the red set, and connection 
(1, 4) is in the green one. Thus, ac-
tor 1 has nonzero entries for both af-
filiations, as Table 2 shows. On the 
contrary, with all of its connections 
residing in the green set, actor 4 has 
only one nonzero entry in its corre-
sponding social dimension. This nat-
urally leads to sparse social dimen-
sions (see Table 2).

A node-view method such as mod-
ularity maximization yields nonzero 
values for all the entries, resulting in 
a dense representation. By contrast, 

the social dimensions based on edge-
view methods are guaranteed to be 
sparse. One consequence of this edge 
partition is that the number of affili-
ations is bounded by the number of 
connections one actor has. If one ac-
tor has d connections, his affiliations 
are no more than d. In the extreme 
case, if one actor has only one con-
nection, this actor can engage in only 
one affiliation. Owing to the power 
law distribution presented in large-
scale networks,8 a large portion of 
nodes in a network would bear a low 
degree. Hence, the resultant social  
dimensions would be sparse.

Both node- and edge-view meth-
ods can be applied to extract social 
dimensions. The key difference be-
tween these methods is that the node 
view defines a community as a set 
of nodes with each node assigned to 
multiple communities, while an edge 
view defines a community as a set of 
edges with each edge assigned to only 
one community. One method is not 
better than the other; it depends on 
the network data, applications, and 
approaches being used.

Comparative Study
The SocioDim framework has many 
advantages over collective infer-
ence. We studied behaviors on three  

representative social media sites to 
yield empirical results. In particular, 
we crawled social networks on the 
blog directory BlogCatalog (http://
www.blogcatalog.com), Flickr, and 
YouTube. User interests or subscribed 
interest groups were deemed as behav-
ior labels. We used F1, the harmonic 
mean of precision and recall, to eval-
uate predictions. That is, let y and 
ˆ ,y

n
∈{ }0 1  denote the true labels and 

predictions, respectively. Precision (P), 
Recall (R), and F1-measure (F1) are 
defined as
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Figure 3 and Table 3 report the av-
erage performance over a multitude 

Figure 2. A network of two communities. 
Actor 1 is affiliated with both the red 
and green communities.
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Table 2. Social dimensions of the toy example.

Actors Node-centric clustering Edge-centric clustering

1 −0.1185 1     1

2 −0.4043 1     0

3 −0.4473 1     0

4 −0.4473 1     0

5 0.3093 0     1

6 0.2628 0     1

7 0.1690 0     1

8 0.3241 0     1

9 0.3522 0     1
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of behaviors for each site. 
These results illustrate the 
benefits of the SocioDim 
framework.

By handling heterogene-
ity, SocioDim can outper-
form collective inference 
considerably, especially 
when the social network 
is sparse and little infor-
mation on user behav-
ior is available.5 Figure 3 
shows the performance of 
representative methods of 
node-view, edge-view, and collective 
inference, respectively. The SocioDim 
framework, with social dimension ex-
traction either in node or edge view, 
indicates that differentiating connec-
tions between actors does help with 
behavior prediction.

With a proper method to extract 
social dimensions, we can develop a 
scalable instantiation of the frame-
work in terms of both time and space 
complexity. Table 3 shows that, with a 
normal PC, SocioDim with social di-
mension extraction in edge view can 
handle a YouTube network of more 
than 1 million users in approximately 
10 minutes and keep the extracted 
social dimensions extremely sparse, 
occupying only a 40-Mbyte mem-
ory space. On the other hand, when 
there is no memory constraint, node-
view methods cost less time, as the 
Flickr data shows. The computation  

time of the edge-view method  
on the YouTube network is much 
smaller than on Flickr, because al-
though it has fewer nodes, Flickr has 
more edges in the network. The node-
view method—which involves an  
eigenvector computation problem— 
is proportional to the number of 
nodes, whereas the edge-view method 
is proportional to the number of  
edges.

The SocioDim framework es-
sentially converts a network into  
features, offering a simple mecha-
nism to seamlessly integrate two 
seemingly orthogonal kinds of in-
formation: social networks and  
actor features. When some actor fea-
tures (such as user profiles and blog 
content) are also available, we can 
combine these features with the ex-
tracted social dimensions before sub-
sequent supervised learning. Our  

results show that this 
kind of integration can 
boost the performance of 
relying on either type of 
information alone.5

In addition, SocioDim 
enables code reuse and 
saves human effort in 
practical deployment. Socio
Dim consists of two steps: 
community detection and  
supervised learning. Many 
algorithms have been de-
veloped and numerous 

existing software packages can be 
plugged in instantaneously.

The SocioDim framework dem-
onstrates promising results to-

ward predicting collective behavior. 
However, many challenges require 
further research. For example, net-
works in social media are continually 
evolving, with new members joining 
a network and new connections es-
tablished between existing members 
each day. This dynamic nature of net-
works entails efficient update of the 
model for collective behavior predic-
tion. It is also intriguing to consider 
temporal fluctuation into the problem 
of collective behavior prediction. We  
expect that along with the Socio
Dim framework, more research work 
would emerge in the near future.
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